
A NOVEL INDEX STRUCTURE FOR LARGE SCALE IMAGE DESCRIPTOR SEARCH

Jiangbo Yuan, Xiuwen Liu

Florida State University
Department of Computer Science

Tallahassee, FL, USA

ABSTRACT

This paper presents a k-means based algorithm for approximate
nearest neighbor search. The proposed Embedded k-Means algo-
rithm is a two-level clustered index structure which consists of two
groups of centroids; additionally, an inverted file is used for record-
ing of the assignments. The coarse-to-fine structure achieves high
search efficiency using multi-assignment operations on the coarse
level. At the query stage, pruning strategies are utilized to balance
the trade-off between search qualities and speeds. Our algorithm
is able to explore the neighborhood space of a given query effi-
ciently. Due to its good recall/selectivity and memory efficiency,
the proposed algorithm is scalable and is able to process very large
databases. Experimental results on SIFT and GIST image descrip-
tor datasets show search performance better and comparable to the
state-of-the-art approaches with lower memory usage and complex-
ity.

Index Terms— k-means, approximate nearest neighbor search,
multi-assignment, pruning strategies, image descriptor indexing

1. INTRODUCTION

Fast nearest neighbor search in high-dimensional space is a fun-
damental problem for large scale content based image/video/audio
retrieval systems in computer vision and multimedia communities.
The scalability and accuracy of traditional nearest neighbor search
algorithms are severely limited by the curses of dimensionality for
data in high dimensional. As a result, real-world applications, where
high dimensional data are ubiquitous, require new approaches and
algorithms to overcome the limitations in needed computation time,
index storage, and search quality. Recently, Approximate Nearest
Neighbor (ANN) search approaches on image descriptors (SIFT [1]
and GIST [2]) have demonstrated to be effective in handle large-
scale image retrieval or other similar problems.

In the last decade, Local Sensitive Hashing (LSH) is one of the
best known ANN methodologies. Its variants (e.g., [3, 4]) have been
applied in different applications; however, LSH algorithms often re-
quire large memory usage. To overcome the memory limitation, al-
gorithms which use limited memory (within memory-based index
structures) are being proposed since they provide a better solution to
meet the requirements of large scale real-time search systems. Those
algorithms are often designed with more consideration of data distri-
butions (i.e., Multiple KD-trees [5], Hamming Embedding [6], Hier-
archical k-Means Trees [7, 8] and Product Quantization [9, 10]).

We introduce a new coarse-to-fine clustering-based index struc-
ture, Embedded k-Means (EMKM), which combines with multi-
assignment and pruning strategies to enable exploring of the lim-
ited neighborhood space while achieves most true neighbors of a
given query. By performing clustering in the residual space [9],

EMKM forms a virtual tree-structure similar to hierarchical k-means
but using an uniform clustering on the second level so with lim-
ited centroids/reference points. At the same time, performing multi-
assignments on the first level increases the probabilities to have the
nearest neighbors falling into the same cells while the embedded
clustering avoids to fully visiting those enlarged cells (see Fig. 1).
Moreover, the pruning strategy limits the number of candidate points
for exhaustive search to balance the search speeds and search quali-
ties.

The remainder of the paper is organized as follows. Section 2
introduces our new ANN algorithm in details. Section 3 discusses
performance comparison between our approach and several state of
the art methods, then provides certain experimental results on large
SIFT and GIST datasets.

2. EMBEDDED K-MEANS

The index structure of Embedded k-Means consists of two parts.
One of them contains two level of centroids and another one is of
inverted file. The inverted file, which is used for recording of the
clustered point groups, is built up in the same way as [7] to fit to the
hierarchical structure.

2.1. Index structure construction

The EMKM index structure is mainly constructed by the following
steps:

1. cluster all database points by k-means to get the first level
coarse centroids, refer to k = k1;

2. assign each database point to multiple, say ma, of its nearest
coarse centroids;

3. mix all the residual data points (by subtracting each of the
assigned coarse centroids) and to be clustered by k-means,
which forms a second level fine centroids; refer to k = k2;

4. assign each residual data point to its nearest fine centroid.

Then we get k1 centroids from the first level and k2 from the
second level, after embedding the k2 residual centroids into every
coarse centroid, finally we get in total k1 × k2 cells in the Inverted
File. Given a database with N points in D dimensions, however,
the true storage for centroids is only (k1 + k2) × D . Fig. 1 is an
illustration of this procedure. We use k-means to cluster those 2D
random points while represent the clusters by the Voronoi cells.

Multiple assignment One of the limitations of k-means based
ANN methods is that the choosing k often suffers the trade-off be-
tween recall and precision. In other words, a larger k is wanted
because it gives finer clustering and filters more points out for fur-
ther processing. However, it retains fewer target nearest neighbors



 

 

Points

Coarse centroids

Coarse centroid Ci

 

 

A virtual cell

Points

Coarse centroids

Coarse centroid Ci

 

 

Recidual points

Fine Centroids

 

 

Points in cell Ci

Coarse centroids

Coarse centroid Ci

Fine Centroids

Fig. 1. Overview of the index construction procedure. Top left figure shows all points and coarse cells; we pick out one cell Ci to illustrate
its new cover range after multiple assignment in the top right figure; black small circles are those data points assigned to centroid Ci. Bottom
left figure shows all residual points and fine cells; bottom right figure illustrates the coarse cell Ci with embedded fine cells.

in near cells that results in more cells have to be visited. In our ap-
proach, we assign each database point to ma of its nearest centroids
in the coarse level. But we must to notice that the multi-assignment
strategy eventually enlarges the cover range of each single cell. It
gives very limited advantage if no further precessing are involved.
We apply a second level k-means clustering on the N × ma points
(or randomly choosing a subset) in the residual space. (A residual
point is calculated by subtracting the corresponding assigned cen-
troid from a given data point.) Finally, each of the N ×ma residual
points are assigned to its nearest fine centroid. Successively, the as-
signment complexity is (k1 + ma × k2) × D for a single database
point. Please see Fig. 2 and Fig. 3 that demonstrated the advantages
of our multiple assignment approach on both running time and selec-
tivity. The selectivity means the proportion of the number of points
on the final short list which are ready for exhaustive checking.

2.2. Query process

Due to the multi-assignment, given a query q whose coarse nearest
centroid is Ci then it is actually assigned into the bold cell whose
search range covers all the points in black circles in the fine level
(see Fig. 1). In other words, the searching range in a single cell is
larger than its possible assignment range for a given query q. Com-
pared with hard assignment approach, this increases the probability
for reaching q’s near neighbors in a single cell. It is obviously that
the multi-assignment still cannot guarantee the nearest neighbor of
q is located at its nearest coarse cell. Therefore, multi-probe opera-
tions are also employed in our approach for both two levels. How-

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1

2

3

4

5

6

precision @1

se
ar

ch
 ti

m
e 

pe
r 

qu
er

y 
(m

s)

 

 

ma=1
ma=3
ma=5
ma=10

Fig. 2. Search speed performance on SIFT1M with parameters of
k1 = 10000 and k2 = 100 and different ma values.

ever, multi-assignment strategy significantly reduces the probe times
have to be made in the coarse level which consequently reduces the
operations made on the fine centroids.

Pruning strategies The pruning process consists of two steps.
Firstly, we limit the amounts of visited cells on both coarse and fine
levels. Assuming that in the coarse level we probe the query q to mp1



0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

precision @1

av
er

ag
e 

se
le

ct
iv

ity

 

 

ma=1
ma=3
ma=5
ma=10

Fig. 3. Selectivity performance on SIFT1M with parameters of k1 =
10000 and k2 = 100 and different ma values.

Dataset Database Learning Set Query Set

SIFT1M 1,000,000 1,000,000 10,000

SIFT50M 50,000,000 1,000,000 10,000

SIFT100M 100,000,000 1,000,000 10,000

GIST1M 1,000,000 500,000 1,000

Table 1. Datasets used in this paper.

cells. For each probe, we assign the new residual query to a fixed
number mp2 fine cells. Thus each probe collects some candidate
neighbors which are “surrounding” to q. Finally, the coarse short list
is constructed by sorting all the candidates cells based on distances.

However, for different queries, the surrounding populations of
near cells are changing due to the diversity of the distribution densi-
ties. Thus the choices of mp1 and mp2 are often biased due to some
difficult queries which require to expand more cells. Nonetheless,
we added in another pruning strategy which checks the amount of
candidate points based on the results after the first pruning step. Af-
ter setting up a maximal visit number Nmaxvisit, the visited number of
cells are not necessary to be the same for different queries. This
pruning strategy significantly speeds up the searching while with
limited loss of accuracy. It actually estimates the surrounding dis-
tribution density of a given query and enables a fast fetching of its
compact neighborhood space relying on the very fine clustering.

Eventually, the search complexity for a given query is approxi-
mately

(k1 +mp1 × k2 +Nmaxvisit)×D. (1)

3. EXPERIMENTAL RESULTS

Datasets Recently, some very large image descriptor datasets are
published to provide a baseline for evaluation on different ANN al-
gorithms. For instance, [9] and [10] introduced packages collected
several SIFT (128 dimensions) datasets in scales up to 1 billion and
GIST1M with 1 million GIST descriptor vectors in 960 dimensions.
Table 1 gives details of datasets we used in this paper including
database, learning set and query set sizes. All SIFT datasets are
subsets from the package of big ANN SIFT1B [10].

Algorithm
Centroids Inverted File

(complexity) (memory in bits)

k-means kD N dlog2 Ne
HKM bf

bf−1
(k − 1)D N dlog2 Ne

PKM mk∗D∗ = k∗D N (dlog2 N e+m log2 k
∗)

EMKM (k1 + k2)D maN dlog2 N e

Table 2. Memory usage complexities of different index structures.

3.1. Empirical evaluation

In this section we discuss how to configure good parameters in our
approach. {k1, k2,ma} impact on both index structure and query
process while {mp1,mp2, Nmaxvisit} are purely for query process.
Empirically, k1 × k2 ∼= N is a good choice since it gives an ap-
proximate population pcell = ma for a single cell which is very fine
but not too sparse. And k1 can be slightly larger than k2 considering
the multi-probe complexity. At the same time, Nmaxvisit is used as
a threshold to control the range of expansion. As the increases of
mp1 and mp2, both of the search accuracy and selectivity will get
stuck in a “upper bound” after the shortlist from the pruning stage
one overflows. Consequently, it is reasonable to set up the estimated
size of shortlist (mp1 × mp2 × pcell) from the pruning stage one to
be slightly larger than Nmaxvisit.

3.2. Comparison with the state of the arts

Memory usage Jegou et al. [9] report that for SIFT 1 million data
set, the index structure of FLANN [8] requires more than 250 MB
of memory while for IVFADC [9] it occupies less than 25 MB. It
is also reported in [7] that the index structure for their hierarchical
k-means tree structure requires 143 MB for a tree with 1 million
leaf nodes (leaf centroids). However, our method only needs with
less than 4.9 MB (k1 = 10000 and k2 = 100) for centroid file
and less than 23 MB (with ma = 5) or 15 MB (with ma = 3)
for the inverted file. The memory usage in total is comparable to
IVFADC and much more efficient than other similar tree structuring
methods. Table 2 reports separately the memory usage complexities
of centroids and inverted file while Table 3 gives the total amount of
cells achieved and assignment complexity for several k-means based
approaches. HKM represents Hierarchical k-Means and PKM is
Product k-Means or IVFADC in [9].

Search performance Referring to the comparison between IV-
FADC and FLANN in the paper [9] on SIFT 1 million dataset, we
can see that our EMKM approach (refer to Fig. 2) achieves slightly
better performance than IVFADC. Moreover, FLANN (including
KD-trees and hierarchical k-means trees) is apparently outperformed
by both EMKM and IVFADC. Our experimental environment setup
is very close to Jegou et al. did in their paper [9] since we use
the same YAEL library for fundamental calculations and all results
were produced by similar single-core machines. The evaluation met-
ric precision@1 is consistent with 1-recall@1 in [9] and precision
in [8].

3.3. Large-scale experiments

Searching on large-scale SIFT datasets (SIFT50M and SIFT100M)
are performed in order to evaluate the scalability and the efficiency
of EMKM (see Fig. 4). We achieved about 96% precision in av-
erage of 8ms per query on SIFT50M and about 92% precision in



Algorithm Total Cells Assignment Complexity

k-means k kD

HKM blf = k bflD

PKM (k∗)m = k k∗D

EMKM k1k2 = k (k1 +mak2)D

Table 3. Assignment complexity of different index structures.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

12

14

precision @1

se
ar

ch
 ti

m
e 

pe
r 

qu
er

y 
(m

s)

 

 

SIFT 50M
SIFT 100M

Fig. 4. Search performance on datasets SIFT50M and SIFT100M
with parameters of k1 = 10000, k2 = 1000 and ma = 5.

around 7ms on SIFT100M. The global descriptors such as GIST
take advantage of relatively lower dimensional representation of a
single image and they are more attractive for scene recognition, web-
scale image search or copy detection tasks [11, 12]. For GIST1M,
we achieved about 95% precision took less than 60ms (see Fig. 5).
Compared to other methods, our approach is especially interested for
high-precision search solutions.

4. CONCLUSION

Through comparison with the state of the art methods on both mem-
ory usage and search efficiency, we believe that the new proposed
EMKM index structure within multiple assignment and pruning
strategies is a promising scheme to handle searching with very large
databases of image descriptors. In the future, it is possible to extend
the current two level index structures to multi-levels in order to
enable better performance; and a multiple tree structure could be
considered in the way of randomized KD-trees does. As an indexing
structure, it is also possible to combine it with the different kinds
of emerging descriptor coding techniques to improve on both speed
and storage .

5. REFERENCES

[1] David G. Lowe, “Distinctive image features from scale-
invariant keypoints,” IJCV, vol. 60, pp. 91–110, November
2004.

[2] Aude Oliva and Antonio B. Torralba, “Modeling the shape of

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

10

20

30

40

50

60

precision @1

se
ar

ch
 ti

m
e 

pe
r 

qu
er

y 
(m

s)

 

 

GIST 1M

Fig. 5. Search performance on GIST1M dataset with parameters of
k1 = 1000, k2 = 1000 and ma = 5.

the scene: A holistic representation of the spatial envelope,”
IJCV, vol. 42, pp. 145–175, 2001.

[3] Mayur Datar and Piotr Indyk, “Locality-sensitive hashing
scheme based on p-stable distributions,” in SCG’04. 2004, pp.
253–262, ACM Press.

[4] Alexandr Andoni, “Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions,” in FOCS06.
2006, pp. 459–468, IEEE Computer Society.

[5] Chanop Silpa-Anan and Richard Hartley, “Optimised kd-trees
for fast image descriptor matching,” in CVPR, 2008, pp. 1–8.

[6] Herve Jegou, Matthijs Douze, and Cordelia Schmid, “Ham-
ming embedding and weak geometric consistency for large
scale image search,” in ECCV, Berlin, Heidelberg, 2008,
ECCV ’08, pp. 304–317, Springer-Verlag.

[7] D. Nister and H. Stewenius, “Scalable recognition with a vo-
cabulary tree,” in CVPR, 2006, vol. 2, pp. 2161–2168.

[8] Marius Muja and David G. Lowe, “Fast approximate near-
est neighbors with automatic algorithm configuration,” in IC-
CVTA, VISSAPP’09, 2009, pp. 331–340.

[9] Hervé Jégou, Matthijs Douze, and Cordelia Schmid, “Product
quantization for nearest neighbor search,” PAMI, vol. 33, no.
1, pp. 117–128, Jan 2011.

[10] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent
Amsaleg, “Searching in one billion vectors: re-rank with
source coding,” in ICASSP, Prague Czech Republic, May
2011, QUAERO.

[11] Antonio Torralba, Robert Fergus, and Yair Weiss, “Small codes
and large image databases for recognition,” in CVPR. 2008,
IEEE Computer Society.

[12] Matthijs Douze, Hervé Jégou, Harsimrat Sandhawalia, Laurent
Amsaleg, and Cordelia Schmid, “Evaluation of gist descriptors
for web-scale image search,” in CIVR, New York, NY, USA,
2009, CIVR ’09, pp. 19:1–19:8, ACM.


