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Abstract— Injuries due to falls are among the leading causes
of hospitalization in elderly persons, often resulting in arapid
decline in functionality and death. Rapid response can improve
the patients outcome, but this is often lacking when the injured
person lives alone and the nature of the injury complicates
calling for help. This paper presents an alert system for
fall detection using common commercially available electronic
devices to both detect the fall and alert authorities. We usea
common Android-based smart phone with an integrated tri-
axial accelerometer. Data from the accelerometer is evaluated
with several threshold based algorithms and position data to
determine a fall. The threshold is adaptive based on user
provided parameters such as: height, weight, and level of
activity. These variables also adapt to the unique movements
that a cellphone experiences as opposed to similar system which
require users to mount accelerometers to their chest or trunk.
If a fall is suspected a notification is raised requiring the
user’s response. If the user does not respond, the system alerts
prespecified, social contacts with an informational message via
SMS. When a contact responds with an incoming call the system
commits an audible notification, automatically answers thecall,
and enables speakerphone. If a social contact confirms a fall, an
appropriate emergency service is alerted. Our system provides
a realizable, cost effective solution to fall detection using a
simple graphical interface while not overwhelming the user
with uncomfortable sensors.

I. I NTRODUCTION

As age related changes in reaction time and balance reduce
the capabilities of people, the likelyhood of a fall leadingto
significant injury increases. Not only are fall related injuries
the number one reason for emergency room visits, it is also
the leading cause of injury-related deaths among adults 65
years old and older [19]. Every year, more than 11 million
people fall [4]. In 2005, unintentional falls accounted foran
estimated 56,423 hospitalizations and 7,946 related deaths in
the United States [24]. Many of these deaths are a result of
a “long-lie,” an extended period of time where the victim
remains immobile on the ground [3]. Just the simple fear of
a long-lie or falling can lead to one’s lower mental health,
isolation, and general degradation of quality of living [21],
[7].

Current systems are available that attempt to reduce the
long-lie period by alerting emergency services when a fall
has been detected. These systems commonly use one of three
methods for classifying a fall:

1) Acoustic/vibration recognition: This is acheived by
having a device, usually implanted in the floor, monitor
sound and other vibrations. It listens for the vibratory
signature of a human fall, which is vastly different
from the signatures of walking, small objects falling,
and other common activities [1], [22].

2) Image recognition: By using overhead cameras in a
fixed location, one can track objects and learn move-
ment patterns. The system adapts to the locations
in which a single human enters/exits the room and
remains inactive (lying/sitting on bed/chair). Common
paths from entry points to inactive areas are then traced
and remembered. It suspects a fall if a person becomes
inactive in middle of a common path [13], [15], [23],
[16].

3) Worn Devices: These systems require the user to wear
external sensors. The devices track the vector forces
exerted on the user. Usually these devices are a tri-
axial accelerometer or gyroscope. If a specific pattern
or threshold is broken, the device alerts a wireless
receiver, which would then alerts emergency contacts
[7], [26], [8].

The majority of fall detection systems require some appli-
cation specific hardware and software design. This increases
cost and limits the commercial viability to the wealthiest,or
most impaired, users. Many also have significant installation
and/or training times, also limiting greater adoption. Despite
implementation differences, all designs have the same re-
quirements: reliability, ease of installation/use, and restriction
of false positives [7]. Falls are often sparse with months
between occurrences, thus the system must always be ready
and accurate. If installation costs or training time is high,
users will reject the system. However, the major reason for
failure is rejection by monitoring services due to a high
number of false alarms [17], [20].

We propose a low priced system that is well suited to all
the requirements by using existing mainstream technologies
that are reliable and ubiquitous. Our approach is to use
a worn device that billions of people already possess, a
programmable cellular phone [25]. Using existing cell phone
technology not only reduces the cost to the patient, it also
exploits a greater range of communication capabilities and
integrated hardware and software features. Touch screen
response and voice recognition, common to smart phones,
provide a reliable interface with the user. By using similar
interfaces to applications the user frequently uses, the rare
interaction with the fall detection software should be familiar.
Cell phones are also more discrete than a dedicated monitor
device, this hopes to reduce rejection due to the device’s
poor aesthetic value and intrusiveness [7]. To limit false
positives we implement several fall detection algorithms and
two stages of communication. When a fall is detected, we
first communicate with the user. If the user does not respond,
we then attempt to contact members in his or her social



network. If both fail or the social contact confirms a fall, the
system alerts an emergency service.

II. M ATERIALS AND METHODS

A. Hardware

The prototyped application is designed for the HTC G1.
The G1 has a QualcommR©MSM7201ATMrunning at 528
MHz. Its dimensions are 117.7 mm× 55.7 mm× 17.1 mm
and weighs 158 grams. The touch screen has a 320 x 480 res-
olution. It has 192 MB of RAM and a 3.2 megapixel camera.
It supports a 3G, Wideband Code Division Multiple network
running at 2100 MHz, however our prototype is using the
T-Mobile 2G network. The phone also supports sending
and receiving SMS and MMS messages. A GPS receiver
is also embedded and it is both 802.11g and BluetoothR©2.0
capable. [6]

B. Software

We chose to use the Android software stack produced by
Google. Android is an open source framework designed for
mobile devices. It packages an operating system, middle-
ware, and key applications [10]. The Android SDK pro-
vides libraries needed to interface with the hardware and
make/deploy an Android application [11]. Applications are
written in Java and run on the Dalvik virtual machine.
Android uses a SQLite database to store persistent data.

Unlike dedicated systems, our software is intended to inte-
grate with the phone’s existing applications. Our application,
iFall, must share resources with the other apps. To make
for a pleasant integration, iFall runs as inconspicuously as
possible while using limited resources. We launch a back-
ground service that constantly listens to the accelerometer.
Only when the algorithm described in the following section
suspects a fall will the service wake up and interrupt the
user. If the user responds, the previous activity is restored
and iFall will sleep again. By only waking up the activity
when a fall is suspected or requested by the user, we allow
applications to run on top of iFall while we minimize our
memory consumption.

C. Fall Detection

Activities of Daily Living (ADL) are normal activities
such as walking and standing. The forces exerted during
ADL are usually different than the forces during a fall. By
taking the root-sum-of-squares of the accelerometer’s three
axials, we are able to determine the acceleration [3]. A fall
must start with a short free fall period. This causes the
acceleration’s amplitude to drop significantly below the 1G
threshold [3]. This represents the period of time when the
actual fall is taking place. The fall must stop and it causes
a spike in the graph. The amplitude then crossing an upper
threshold suggests a fall. Typically the minimum value for
the upper threshold is around 3G [5]. If a person is seriously
injuried in a fall they usaully remain on the ground for a
period of time. This is characterized by the 1G flat line at
the end of the graph. All of these events occur within a short
duration. The following is a graph of a typical fall.

If the amplitude crosses the lower and upper thresholds in
the set duration period a fall is suspected. However, relying
strictly on this method would produce an intolerable number
of false positives since certain ADL and the upper threshold
can overlap [2]. We refine the algorithm by taking position
into consideration. The assumption is a fall can only start
from an upright position and end in a horizontal position
[14]. Thus the difference in position before and after the
fall is close to90 ◦ [26]. A fall is only suspected if both
thresholds are crossed within a duration and the position
is changed. Dropping the phone is a frequent motion that
resemables a suspected fall. Also a fall may occur but, be
minor leaving the user unharmed. To prevent these false
alarms we add one more stage to the process, recovery.

If a fall is suspected, we start a short timer. This timer
allows a fallen user to regain an upright position or a
dropped phone to be picked up. If the original position is
resorted within the time limit the algorithm is reset. If the
timer expires and position is not restored, we assume the
phone/user is lying on the ground [9]. It then emits a prompt
that requires the user to respond within a short time window.
A fall is confirmed if the user does not respond. This allows
users to reduce the number of false positives. An alert only
sends when a fall is confirmed.

D. Application Features

The iFall application is designed to be simple to use. To
achieve this, we severely limit the number of buttons and
options available to the user. The main screen consists of
one button and a label. The button starts and stops the fall
monitor while the label displays the state. The fall monitoris
implemented as a low-powered, Android service. A service
allows the fall monitor to constantly run the background.
When the monitor suspects a fall, an intent is sent to iFall.
This wakes up the application and attempts to get the user’s
attention by repeatedly vibrating, flashing LEDs, and playing
an audio message. The app prompts the user with a simple
pop-up window telling them to press an on-screen button
if they are okay. Pressing the button cancels the alert, and
the interrupted activity is restored. This gives users the
opportunity to eliminate false positives [20], [8].



The iFall application has additional methods to reduce the
number of false positives. We allow the amplitude’s upper
threshold described in the ’Fall Detection’ section to be
variable. The application displays a small list of configuration
options when the phone’smenu key is pressed. One option
is to adjust the sensitivity, the capacity to detect a fall [17].
So the less sensitive, the higher the upper threshold is. Given
information such as age, weight, height, and level of activity
are also factored into the equation [15], [26].

The other option under the application’s menu isAdd a
contact. This allows the user to add social contacts to their
iFall, emergency contact list. Using social contacts to confirm
a fall before alerting an emergency service is another method
for filtering false positives. When a fall is confirmed, every
contact in the iFall emergency list is sent a SMS message
[18]. This message states that a fall was detected at the given
time and includes the GPS coordinates of the fall. It also
asks the contact to call the fallee. When called, a message
is played on the fallee’s phone and the call is automatically
answered and placed on speaker. Enabling bidirectional voice
communication between the fallee and social contact reduces
the number of false positives [20]. The dedicated emergency
services are only notified when a social contact also confirms
the fall, or in the case if no social contacts call the fallee.

III. C HALLENGES

Using smart phone technology for fall detection has nu-
merous advantages in cost and capability of the system.
However, leveraging an existing system does pose challenges
that single use detectors can avoid. One advantage of using
a smart phone, is that the user is more likely to carry the
phone throughout the day since it seen as indispensable in
daily living, whereas users may forget to wear special micro
sensors [27]. Unfortunately, it may be difficult to convince
users to mount the phone to various body parts inorder
to improve fall detection rate [12]. Instead, the software
must dynamically adjust to different methods of carrying the
phone (e.g., in the purse, pants or shirt pocket, or on a belt or
neck clip). This requires the software to classify acceleration
parameters of general use to identify the correct parameters
for the fall detection logic.

To adapt for different carrying methods, we dynamically
adjust the upper threshold and staring position. If the phone
is carried on more accelerated body parts, such as the arms,
the level of activity is automatically be risen. This causesthe
upper threshold to be greater [12]. Likewise, more stationary
spots like the trunk will lower the threshold [3]. To account
for the different orientations that phone may be held, like
vertically or horizontally, we dynamically adjust the starting
position. If the phone is resting for an extended period of
time with 1G acceleration, we designate that to be the starting
position. This allows the position to be dynamically set as
the user interacts with the phone throughout the day.

Figure 1 graphs the walking/running activity. Running’s
amplitude can break the lower and upper threshold. If the
user suddenly stops, it can cause an extended period of 1G
acceleration. These events together suggest a fall. However,
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a prompt will not be given because the phone’s starting and
ending position are the same. Figure 2 graphs the sitting and
standing activity. This activity changes the phone’s position.
However, sitting and standing’s acceleration will not usually
break the upper threshold. Both experiments were performed
while the phone was in the user’s front pant’s pocket.

Some interactions with the phone, such as answering then
ending a call, can break the thresholds and change position
(see figure 3). Additional refinements to our algorithm must
be made to prevent this. We do not allow the starting position
to be dynamically changed if a call is in session. This will
filter out the false positives in actions such as raising the
phone to the user’s ear to start a call and lowering the phone
from the user’s ear to end a call.

IV. CONCLUSION

Our system provides a viable solution to fall detection
in the elderly. Using existing, mass marketed technologies
will limit cost making it available to the majority of the
public. Implementing proven fall detection algorithms makes
the system highly reliable. Reliability and reduced number
of false positives means greater adoption by emergency ser-
vices. The importance of the cell phone in everyday life de-
creases the chances of being forgotten. Everyday interaction
with the phone makes the interface more familiar to the user.
A cell phone is also less intrusive than dedicated devices. The
familiar interface, non-intrusiveness, and affordability leads
to less rejection from users. By combining cheap hardware
and open source software, we hope to provide a realistic
solution to the elderly fall problem.

A. Future Work

The flexibility of the Android platform along with the
phone’s hardware capability allows this system to be ex-
tended in numerous ways. Bluetooth support could allow
iFall to gather additional data readings from micro-sensors
embedded in articles of clothing [18]. Ideally, a sensor would
be embedded in head or eye wear due to the fact that the
head is the most reasonable location for fall detection using
threshold based algorithms [12]. The system could also use
image support from mounted, bluetooth cameras as described
in [15], [23], and [16].

The system could also use the Wi-Fi connection to log
the data readings on a server. More sophisticated pattern
matching algorithms can be then be ran [27]. Efforts are
being made to build a database of common ADL readings
[20]. This information can be exploited in attempts to classify
what type of action the user is performing based on pattern
matching techniques.

REFERENCES

[1] Majd Alwan, Prabhu Jude Rajendran, Steve Kell, David Mack, Sid-
dharth Dalal, Matt Wolfe, and Robin Felder. A smart and passive
floor-vibration based fall detector for elderly.

[2] A.K. Bourke and G.M. Lyons. A threshold-based fall-detection
algorithm using abi-axial gyroscope sensor. (30):84–90, December
2008.

[3] A.K. Bourke, J.V. O’Brien, and G.M. Lyons. Evaluation ofa threshold-
based tri-axial accelerometer. (26):194–199, September 2006.

[4] Garret Brown. An accelerometer based fall detector: Develop-
ment, experimentation, and analysis. Technical report, July 2005.
EECS/SUPERB.

[5] Jay Chen, Karric Kwong, Dennis Chang, Jerry Luk, and Ruzena
Bajcsy. Wearable sensors for reliable fall detection. pages 3551–3554.
Proceedings of the 2005 IEEE Engineering in Medicine and Biology
27th Annual Conference, September 2005.

[6] HTC Corporation. G1 product specification, 2009.
[7] K Doughty, R Lewis, and A McIntosh. The design of a practical and

reliable fall detector for community and institutional telecare.Journal
of Telemedicine and Telecare, 6(1):150–154, 2000.

[8] Thomas Riisgaard Hansen, J. Mikael Eklund, Jonthan Sprinkle,
Ruzena Bajcsy, and Shankar Sastry. Using smart sensors and acamera
phone to detect and verify the fall of elderly persons. European
Medicine, Biology and Engineering Conference (EMBEC 2005),
November 2005.

[9] J.Y. Hwang, J.M. Kang, Y.W. Jang, and H.C. Kim. Development of
novel algorithm and real-time monitoring ambulatory system using
bluetooth module for fall detection in the elderly. pages 2204–2207,
September 2004.

[10] Google Inc. Android. www.android.com.
[11] Google Inc. Android developers. developer.android.com.
[12] Maarit Kangas, Antti Konttila, Ilkka Winblad, and TimoJamsa.

Determination of simple thresholds for acceleroetry-based parameters
for fall detection. pages 1367–1370. Proceedings of the 29th Annual
International Conference of the IEEE EMBS, August 2007.

[13] Tracy Lee and Alex Mihailidis. An intelligent emergency response
system: preliminary development and testing of automated fall detec-
tion. Journal of Telemedicine and Telecare, 11(4):194–198, 2005.

[14] Suhuai Luo and Qingmao Hu. A dynamic motion pattern analysis
approach to fall detection. 2004.

[15] Shaou-Gang Miaou, Pei-Hsu Sung, and Chia-Yuan Huang. Acus-
tomized human fall detection system using omni-camera images and
personal information. pages 39–41. Proceedings of the 1st Distributed
Diagnosis and Home Healthcare (D2H2) Conference, April 2006.

[16] Hammadi Nait-Charif and Stephen J. McKenna. Activity summarisa-
tion and fall detection in a supportive home environment. 2004.

[17] N Noury, A Fleury, P Rumeau, A.K. Bourke, G.ó Laighin, VRialle,
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