
Automatic Web Page Coloring

Polina Volkova, Soheila Abrishami, Piyush Kumar

Florida State University, Tallahassee, FL 32306, USA
volkova,abrisham,piyush@cs.fsu.edu

(a) Original web page (b) Color guide image (c) Recolored web page

Fig. 1. Web page recoloring example

Abstract. We present a web based tool for automatic recoloring of web
pages. Automatic application of different color palettes to web pages
is essential for both professional and amateur web designers. However
existing recoloring tools for images and web pages do not provide full
recoloring. We replace colors in .css, .html, and .svg files, and recolor
images such as logos, banners, and background tiles to recolor web pages
entirely. The new color theme is based on a color guide image provided
by user. Evaluation shows a high level of satisfaction with the quality
of palettes and results of recoloring. Our tool is publicly available at
http://chameleon.cs.fsu.edu/.

1 Introduction

Color is one of the most important components in web page design. The ability
to automatically recolor a web page with a given color palette would be very
valuable for web designers. Unfortunately the problem of automatic coloring of
web pages has not been fully addressed. There exists a plethora of tools that can
assist with web page coloring tasks such as palette selection, image recoloring,
and image color adjustment. However, these tasks have to be performed sepa-
rately. An automated web page recoloring tool should combine palette selection,
web page and image recoloring. To the best of our knowledge, currently no tool
provides this functionality.
The problem of web page recoloring has been partially addressed in research.

Works on website recoloring for people with vision deficiencies [1,4] focus specif-
ically on accessibility and cannot be used generically, because they do not ensure
color harmony, do not allow users pick the colors, or provide full coloring. We
found only one work that addresses a problem similar to ours, by Gu et al. [5].
Gu et al. presented a tool for redefining web page color scheme based on a mood
board, using a genetic algorithm to generate assignment of palette colors to .css
colors. Their work has several weaknesses, such as simplistic palette extraction
method based on K-means, no image recoloring, and not adjusting size of new
palette to match the variety of colors on the web page. We found patent appli-
cations for a website colorization system1, and for recoloring images on a web
page2, which confirms that our problem is of practical interest but under re-
searched.
The goal of this paper was to create a web page recoloring method that fulfills
the following objectives:

◊ Esthetics: give users a simple way to specify a harmonious color scheme.
◊ Full coloring : recolor web pages including images, keeping in mind that some

images such as photos should not be recolored.
◊ Consistency : preserve color proportions and color variety of the original page.
◊ Readability : recolored web page should have proper contrast.
◊ Availability : the tool should be intuitive to use and publicly available.

To the best of our knowledge, our work is the first website coloring system that
achieves the above goals simultaneously. Our contributions include a novel ap-
proach to palette extraction that combines human input and automation, and
a method for palette expansion that preserves consistency of the color theme
and ensures proper contrast. Our system works as follows: users submit their
web page and a color guide image via a web interface. Based on the submitted
image, a new color palette is created, and assignment for substituting colors in
.css, .html, and .svg files is computed. Images such as logos, banners, and back-
ground tiles are recolored to reflect the new palette. Figure 1 gives an example
of recoloring produced by our system. A survey conducted for evaluation shows
that our palette extraction method outperforms other methods, and that recol-
oring results are rated well by users.
Notation. Vectors are denoted by lower-case Roman letters. For a vector p, pi
denotes its ith component. i, j, k, l,m, n are positive integers. We reserve w to
denote weight and d(·) to denote Euclidean distance. Scalars are represented by
lower-case Greek letters. Upper-case script letters are used for all other objects
such as sets, images, and matchings. LAB denotes LAB space and RGB de-
notes RGB space. x̂ denotes a weighted version of x, for instance if x is a color,
x = {ι, α, β}, where ι, α, β are coordinates in LAB space, then x̂ = {ι, α, β, w},
where 0 ≤ w < 1 is weight. L̂AB denotes LAB space with additional weight

coordinate, as in x̂ ∈ L̂AB. We will use LAB space for all color manipulation,
and K-means algorithm for all clustering tasks.

1 https://www.google.com/patents/US20090031213
2 https://www.google.com/patents/US8731289

2 Automatic Web Page Recoloring

This section describes our approach to automatic recoloring of web pages. In
Section 3.1 we introduce common color operations. Section 3.2 describes related
work, and our method for automatic palette selection based on a guide image.
Section 3.3 explains the steps of web page recoloring, which are color extraction
from the web page, assignment of colors, and additional color generation. In
Section 3.4 we describe images classification for recolorability, and explain our
method for image recoloring. Figure 2 shows the organization of our system.
Users submit a query consisting of an image and a web page URL. Query is
queued and processed as described in Sections 3.2 - 3.4. Result is rendered and
displayed to user.

Image
Recolorability

 Model

Palette
Collection

Query

Palette Selection

.CSS and .HTML Recoloring

Palette Expansion/Reduction

Image Classification

Web Color Extraction

Color Assignment

Preprocessing

Build Palette
Collection

Build Image
Recolorability

Model

Back End

Front End Chameleon.cs.fsu.edu

REDIS
Queue

1

2

3

4

5

6

Image Recoloring7

Fig. 2. System modules and data flow

2.1 Color Operations

Summarizing Images. To capture color characteristics of an image for com-
parison with other images, we summarize each image in a set of its cluster colors.
Due to perceptual uniformity of LAB space, clustering works very well for group-
ing similar colors. Although it was pointed out that clustering is not a proper
way to extract a palette from an image [6, 9], it suits our purpose since we use
it not to obtain the final palette, but rather as a fast and simple way to extract
color features of an image.
We downscale an image for faster processing, represent it as an array of pixels
in LAB space, and cluster it into k clusters, k=5. Clustering gives us centroid
colors C = {c1, ..., ck} ∈ LAB, and cluster weights Wc = {w1, ..., wk} ∈ R. As a

result, an image is represented by k weighted colors, Ĉ = {ĉ1, ..., ĉk} ∈ L̂AB.
Matching Two Sets of Colors. The purpose of matching is to find best color-
to-color assignment for all colors in two sets. It is useful for mapping to a new
palette, and for evaluating image similarity.
Let a, b be two colors ∈ LAB. Perceptual Difference d(a, b) is a good measure
of color similarity due to perceptual uniformity of LAB space. Adding weight,
we get dwλ (â, b̂) =

√
d(a, b)2 + λ(wa − wb)2. In our context weight w is color

proportion. We experimented with coefficient λ and found that λ ≈ 1 works
best for evaluating image similarity. Intuitively, color proportion is important
but it is secondary to color information.
We use Kuhn-Munkres algorithm [8] with cost function d(·) to find minimum
cost bipartite matching MA,B between two sets of colors A = {a1, ..., an} ∈
LAB,B = {b1, ..., bn} ∈ LAB, MA,B = {〈ai, bj〉|ai ∈ A, bj ∈ B}. We use dwλ (·)
to find weighted matching MÂ,B̂ if weights are known.

2.2 Automatic Palette Selection from Image

Our goal is to give users an easy way to select a high-quality palette. Color
theory states that color distribution templates can be used to create harmonious
color themes [7]. However it has been shown that people do not prefer palettes
based strictly on these templates [6]. Palette extraction from images is another
popular approach. Some works use histograms [3] and clustering [2,5], but more
advanced methods involve human input. For example, a regression model trained
on color themes created by people can extract themes from images that closely
match human-extracted themes [6]. A color compatibility model learned by linear
regression on palette datasets collected online can be used for improving existing
palettes and extracting color themes from images [9].
Using an image as a color guide provides an intuitive way to specify a palette.
To ensure palette quality, we decided to combine automatic extraction with
human expertise, because experiments show that artists create better palettes
than extraction algorithms [9]. We will automatically select a palette generated
by a professional color designer using a color guide image uploaded by user.
Preprocessing. Our approach requires a palette collection. We assembled a
palette source3 where each record consists of a palette created by a color expert,
and an image on which the palette was based (Figure 3 d). We will use the
palette for recoloring, and associated image for comparison with the user image.
For each record, we retrieve palette colors P = {p1, ..., pn} ∈ LAB, |P| can be
different for different records. To compute weights for pi ∈ P, we cluster the
image using k = |P| into C = {c1, ..., ck} ∈ LAB and WC = {w1, ..., wk} ∈ R.
Next we compute a matching MP,C = {〈pi, cj〉|pi ∈ P, cj ∈ C}, and assign
weights wj to palette colors pi, WP = {wj |〈pi, cj〉 ∈ MP,C}. Now we have a

weighted palette P̂ = {p̂1, ..., p̂n} ∈ L̂AB. Finally, we re-cluster the image with

k=5 to get summary R̂ = {r̂1, ..., r̂5} ∈ L̂AB. R̂ and P̂ for all records comprise
our palette collection E = {R̂i, P̂i}. This data are stored in binary files and used
in palette selection: R̂i for matching collection image to the user image, and P̂i
as palette for recoloring.
Automatic Palette Selection. To automatically select a palette T that closely
matches colors of a guide image U , we find an image I in our collection that is
most similar to U , and retrieve its palette (Figure 3). First we cluster U with

k=5 into Ĝ = {ĝ1, ..., ĝ5} ∈ L̂AB. Then we iterate through palette collection E
3 4561 palettes obtained from color blog Design Seeds, http://design-seeds.com/

to find a record {R̂i∗ , P̂i∗} such that bipartite matching cost between Ĝ and R̂∗i
is minimum. Finally, we retrieve the palette T̂ = P̂i∗ to be used for recoloring
the web page. We will refer to T̂ as target palette.

> > >

(a) User image U (b) Summary G (c) Palette
collection E

(d) Match from palette
collection I

Fig. 3. Automatic palette selection example

2.3 Automatic Web Page Coloring

To recolor webpage with palette colors T , we need to extract all colors from web
page, expand or shrink T to match the number of web page colors, map target
palette colors to web page colors, and replace colors in .css, .html, and .svg files.
Extracting Colors from Web Page. We implemented our own color extrac-
tion for the following reasons. First, we encountered an issue of unused colors in
the .css files. Web designers often reuse same .css files for multiple projects and
do not remove unused styles. If we simply take all colors from .css files, we get
many colors that do not actually appear on a web page (Figure 4). This nega-
tively affects speed and quality of recoloring. Cleaning up .css files turned out
unreliable4 or hard to automate5. Color extraction from website did not remove
unused colors6. In addition, we needed to calculate color proportions, which is
not provided by existing tools.
We solved the problem by discarding colors that do not appear in the screenshot
of the web page. First, we find all hexadecimal, RGB, RGBA colors in .html,
.css, and .svg files, and convert them to RGB format. Let’s call this set H =
{h1, ..., hn} ∈ RGB. Then we take screenshot of the webpage without images.
We extract all distinct colors from the screenshot and calculate their weights,
getting R = {r1, ..., rm} ∈ RGB, WR = {w1, ..., wm} ∈ R.
Next, we find mapping between colors inH andR to detect unused colors. Colors
inRmay slightly differ from corresponding colors inH due to image compression
or use of gradients. We say that 〈ri, hj〉 is a match if d(ri, hj) < ζ, where ζ =20
is a threshold derived experimentally. There can be multiple matches ri to the

4 https://github.com/peterbe/mincss
5 https://chrome.google.com/webstore/detail/css-remove-and-combine/

cdfmaaeapjmacolkojefhfollmphonoh?hl=en-GB
6 http://www.colorcombos.com/

(a) Web page screenshot (b) All colors from .css and .html (top),
colors used on web page (bottom)

Fig. 4. Color extraction from a web page.

same hj∗ . Let Xj be the set of indexes i for ri matched to the same hj∗ , then
w′j∗ =

∑
l∈Xj∗ wl. Now we have used colors H′ = {h1, ..., hl|hj ∈ 〈ri, hj〉} ⊂ H

and WH′ = {w′1, ..., w′l} ∈ R. We convert all hj ∈ H′ to LAB, getting the set of

weighted web page colors Ŝ = {ŝ1, ..., ŝl} ∈ L̂AB.
Assigning Palette Colors to Web Elements. To replace colors in files, we
need to compute a mapping between old and new colors. As input to this step,
we have two sets of colors: target palette T̂ and web page colors Ŝ. Most likely,
|T̂ | 6= |Ŝ|: T̂ can be larger or smaller than Ŝ. We need to expand or reduce
palette T̂ into a new palette T̂ ′ of size |Ŝ|.
Let Q denote the smaller palette, and G denote the larger palette. Q̂ = T̂ , Ĝ = Ŝ
if |T̂ | < |Ŝ|, otherwise Q̂ = Ŝ, Ĝ = T̂ . Let |Q| = n. First, we cluster G with k = n
to get G′ = {g′1, ..., g′k} ∈ LAB, WG′ = {w′1, ..., w′k} ∈ R. We replace centroids

g′i with actual palette colors gj ∈ Ĝ such that j = arg min
i,j

d(g′i, gj) and keep w′i.

That gives us Ĝ′ = {ĝ1, ..., ĝk} ∈ L̂AB. Now we can find a bipartite matching

between two sets of colors of same size n: MĜ′,Q̂ = {〈ĝj , q̂i〉 |ĝj ∈ Ĝ′, q̂i ∈ Q̂}. If

Q̂ = Ŝ, we can use T ′ = G′ for recoloring. (Figure 5(a)). Otherwise, we need to
expand palette Q (Figure 5(b)).

>
>

(a) Target palette T (G) (top),
web palette S (Q) (center),

reduced palette T ′ (G′) (bottom)

(b) Web palette S (G)(left), centroids G′

matched to target palette T (Q) (center),
extended palette T ′ (right)

Fig. 5. Palette reduction (a) and extension (b)

Palette expansion. We need to create suitable replacement colors for all colors
on the web page, staying true to palette T . It is critical to set the luminance of
new colors correctly for the recolored web page to be legible. We could achieve

same contrast as on the original web page by copying luminance of old colors to
new colors, ιt = ιs,∀t ∈ T ′,∀s ∈ S. However this changes the appearance of col-
ors, which may result in unpleasant palette, or a palette that does not represent
user image well. A better solution is to preserve the original palette colors, and
to shift ι for additional colors. This preserves contrast because new colors will
be distributed similarly to the original colors, with respect to luminance.

(a) Cluster of website colors
{g1, ..., gk} and centroid color gi∗

(b) gi∗ , qj∗ (c) qj∗ and additional colors
generated from qj∗

Fig. 6. Creating additional colors

Figure 6 demonstrates the process of creating additional colors on the example
of one color. One of web colors gi∗ ∈ G′ represents a cluster of web colors
{g1, ..., gk} ∈ G (Figure 6 a). gi∗ is matched to a target palette color qj∗ ∈ Q̂
(Figure 6 b), 〈gi∗ , qj∗〉 is added to final mapping FS,T . We create new shades
from qj∗ for the remaining web colors gi ∈ {g1, ..., gk} (Figure 6 c).
We need to create |{g1, ..., gk}| = m additional colors. Replacement color qi for
gi starts with qi = qj∗ , but we set ιqi = ιqj∗ + (ιgi∗ − ιgi) for all gi ∈ {g1, ..., gk},
where ιx is the luminance of color x ∈ LAB. We check that qi is within the
boundaries of LAB space and add 〈gi, qi〉 to FS,T . Once we compute a replace-
ment for each web page color, we convert colors in FS,T back to hexadeci-
mal/RGB/RGBA format and substitute corresponding colors in .html, .css, and
.svg files.

2.4 Image Classification and Recoloring

One of our objectives was to recolor images on a web page. However, not all
images should be recolored. It makes sense to recolor images that contain few
colors, e.g. text, logos, background tiles. Art and photographs are examples of
images that should not be recolored (Figure 7). To distinguish recolorable images,
we use a decision tree trained on a sample set of images classified by hand. We
pass only recolorable images to the image recoloring module.
Image Recoloring is a well-covered topic. Chang et al. [2] presented a tool for
image color adjustment by editing palette extracted from an image. Reinhard
et al. [10] gave a method for color correction that uses statistical analysis to
transfer color characteristics from one image to another. Xia [11] extended the
work of [10] by including saliency map into the color transfer formula.
We borrowed ideas from Chang et al. [2] because their method is very suitable
for our task of recoloring images with a set palette. We used a simplified version
of their algorithm. The input is an image, and the target palette T . We extract

(a) Original webpage (b) Recolorable images (top) and
non-recolorable images (bottom)

(c) Recolored result

Fig. 7. Image classification and recoloring

the initial palette Y of the image using K-means with k = |T |. Our setup is
different from the original algorithm by Chang et al., where it is known which
color is modified in each step of the recoloring. We start with two palettes T
and Y, unknown order of recoloring, and unknown relation between colors of the
palettes. We first perform matching to find the pairing of colors in the initial
and target palettes MT ,Y . Then, a sequential color transformation algorithm is
used to recolor the image.
The transformation function f(x) transforms a color x ∈ LAB in the original
image to a color x′ ∈ LAB in the recolored image. If |Y| = |T | = 1, we need one
transformation function x′ = f(x) as f(x) = (y − t) + x. However if |T | > 1, we
have k transfer functions fi(x), i = 1 . . . k which need to be blended. In order to
smooth the effect of the individual transfer functions fi(x) at yi, the functions are
combined with different weights. For weight calculation details refer to Section
3.5 of [2].
We treat background separately. The old background color a ∈ S is set to the
color that appears most on the web page. The new background color b ∈ T ′
was calculated for a per Section 2.3. Recoloring procedure takes a, b. If a certain
percentage of pixels in the edges of the image passed for recoloring is of color a,
we say that the image has background, and we replace all pixels of color x ' a
with b (we allow for some color variance due to image compression). All other
colors are replaced as described above.

3 Experiments

Image Classification. We assembled a sample set of images from Fortune 500
websites, labeled them by hand, and extracted the following features: number of
colors, aspect ratio, size, grayscale or color, and histogram. Half of the sample set
was used for training and half for testing. We experimented with multiple classi-
fiers from Python package sklearn7. Classification works very well, all classifiers
get above 90% of cases right (Table 1).
Palette and Recoloring Evaluation. We conducted two surveys to confirm
that our palette extraction method produces good palettes, and to evaluate the
overall result of web page recoloring. For both surveys we collected responses

7 http://scikit-learn.org/stable/

Table 1: Classification precision on a test set of 1063 images (510 recolorable
and 553 non-recolorable).
Classifier Decision Random SVM KNN Logistic Naive

Tree Forest Regression Bayes

Precision 1 0.99 0.96 0.93 0.93 0.91

from same 86 participants in the United States, who were not compensated. In
order to evaluate the quality of palettes, we presented ten sets of three palettes,
generated as follows. Ten images were picked at random from an art collection8.
For each image, we extracted a palette using our method (Section 3.2), method
by Lin et al. [6], and K-means. Resulting palettes were same size and rendered
exactly same way. We asked to arrange palettes in order from best to worst.
Initial ordering of palettes in the survey was randomized. Despite the fact that
color scheme ratings are very subjective, the results are clear (Figure 8(a)). Our
palettes received more best ratings and fewer worst ratings than other palettes.
We performed a Wilcoxon Rank-Sum test with Bonferroni correction on the
pairs of ratings, showing that the results were significant (p < .0001 for our vs.
K-means, p < .005 for our vs. Lin et al.). This is an encouraging validation of
our palette extraction method.

O
ur
m
et
ho
d

K
-m
ea
ns

Li
n
et
al
.

0.5

1

%
o
f
6
5
8
to
ta
l
re
sp

o
n
se
s

Best Second best Worst

Yes Somewhat No

200

400

N
u
m
b
er

o
f
re
sp

o
n
se
s

Is the color scheme of the recolored web page
pleasant?

Does the color scheme of the recolored web page
reflect the new palette?

Is the recolored web page readable?

Is the result of recoloring good overall?

(a) Palette rating (1-best, 3-worst) (b) Web page recoloring evaluation

Fig. 8. Survey results

To evaluate the quality of web page recoloring, we presented subjects with ten
renderings of original web page, new palette, and recolored web page. We care-
fully selected representative websites for this experiment, aiming to cover typical
web page types. We picked an information page, a forum-style page, and a blog;
each with light, medium, and dark color scheme, similar to [4]. Web pages were
recolored using randomly chosen pictures from an art collection8. The majority

8 Private digital art collection of 382 images

of respondents rated our recoloring positively (Figure 8(b)). For each question we
show statistical significance at p < .001 using t-test on proportion of participants
who answered positively vs. negatively.

4 Conclusion and Future work

We presented a new method for automatic recoloring of web pages. We achieved
the objectives of esthetics, full coloring, consistency, and readability, and built
a publicly available web based tool. Evaluation shows that palette extraction
and overall web page recoloring results are good. We believe that our approach
produces better results than closest comparable work by Gu et al. [5]. Future
work will focus on making our tool interactive. We want users to be able to
modify palette, manually map colors, and specify which images to recolor.

References

1. Aupetit, S., Mereuta, A., Monmarché, N., Slimane, M.: Comparison of interruptible
meta heuristics for automatic recoloring of web pages with an accessibility goal.
In: AMSE - Advance in modelling, Handicap 2012 revised selected papers, Series
C Automatic Control (Theory and Applications), vol. 73, pp. 11–21 (2013)

2. Chang, H., Fried, O., Liu, Y., DiVerdi, S., Finkelstein, A.: Palette-based photo
recoloring. ACM Trans. Graph. 34(4), 139:1–139:11 (Jul 2015)

3. Delon, J., Desolneux, A., Lisani, J.L., Petro, A.B.: Automatic color palette. In:
IEEE International Conference on Image Processing 2005. vol. 2, pp. II–706–9
(Sept 2005)

4. Flatla, D.R., Reinecke, K., Gutwin, C., Gajos, K.Z.: SPRWeb: Preserving sub-
jective responses to website colour schemes through automatic recolouring. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
pp. 2069–2078. CHI ’13, ACM, New York, NY, USA (2013)

5. Gu, Z., Wu, Z., Yu, J., Lou, J.: A color schemer for webpage design using interactive
mood board. In: Kurosu, M. (ed.) Human-Computer Interaction. Human-Centred
Design Approaches, Methods, Tools, and Environments, Lecture Notes in Com-
puter Science, vol. 8004, pp. 555–564. Springer Berlin Heidelberg (2013)

6. Lin, S., Hanrahan, P.: Modeling how people extract color themes from images. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
pp. 3101–3110. CHI ’13, ACM, New York, NY, USA (2013)

7. Matsuda, Y.: Color Design. Asakura Shoten (1995)
8. Munkres, J.: Algorithms for the assignment and transportation problems. Journal

of the Society of Industrial and Applied Mathematics 5(1), 32–38 (March 1957)
9. O’Donovan, P., Agarwala, A., Hertzmann, A.: Color compatibility from large

datasets. ACM Trans. Graph. 30(4), 63:1–63:12 (Jul 2011)
10. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between im-

ages. Computer Graphics and Applications, IEEE 21(5), 34–41 (Sep 2001)
11. Xia, J.: Saliency-guided color transfer between images. In: Advances in Visual

Computing: 9th International Symposium, ISVC 2013, Rethymnon, Crete, Greece,
July 29-31, 2013. Proceedings, Part I, pp. 468–475. Springer Berlin Heidelberg,
Berlin, Heidelberg (2013)

