
Exceptions

Lecture 15
CGS 3416 Spring 2017

April 12, 2017

Lecture 15CGS 3416 Spring 2017 Classes April 12, 2017 1 / 14



What is an Exception?

An exception is an object that represents an error or exceptional
event that has occurred.

These events are usually errors that occur because the run-time
environment has detected an operation that is impossible to carry out.

Exception objects are all children of the Throwable class.

Exceptions represent normal error events that can occur in your
program.

Examples:

Array index out of bounds - IndexOutOfBoundsException
Open a file that does not exist - FileNotFoundException
Call a method that does not exist - NoSuchMethodException

Lecture 15CGS 3416 Spring 2017 Classes April 12, 2017 2 / 14



Types of Exceptions

Exceptions generally come in two flavors:

Normal Exceptions (checked exceptions)
These exceptions are the ones that every good program should watch
for (for example, the FileNotFoundException.
You have to handle these (either catch them or declare that your
method can throw them).

Runtime Exceptions (unchecked exceptions)
These exceptions have the potential to be in all code you write
(example - IndexOutOfBoundsException).
You do not need to handle these.

Errors
There is a class of exceptions called errors these are usually not
recoverable (example - VirtualMachineError).
These exceptions do not need to be handled.

Lecture 15CGS 3416 Spring 2017 Classes April 12, 2017 3 / 14



Some Common Built-In Exception Types

ClassNotFoundException - raised if you attempt to use a
nonexistent class.

CloneNotSupportedException - raised on an attempt to call
clone() for an object that doesn’t implement the Cloneable interface.

RunTimeException - numerous types of programming errors that
usually cause the program to abort.

ArithmeticException

NullPointerException

IndexOutOfBoundsException

others

IOException - raised on input/output errors. Several subtypes.

AWTException - raised to deal with graphics errors.

You can also build your own exception types. These should be derived
from class Exception, or from one of its subclasses.

Lecture 15CGS 3416 Spring 2017 Classes April 12, 2017 4 / 14



Why have exceptions?

Exceptions are used to build robust programs.

Exceptions allow the programmer to recover from an error or
exceptional event.

Usually, if an exception is not handled, it can cause the program to
terminate unnaturally and prematurely.

Java was originally a language for embedded systems (TVs, phones,
watches, etc.) These systems should never stop working, exceptions
are needed for these systems.

Lecture 15CGS 3416 Spring 2017 Classes April 12, 2017 5 / 14



How do you do exception handling?

The process involves:

Claiming exceptions - each method needs to specify what
exceptions it expects might occur

Throwing an exception - When an error situation occurs that fits an
exception situation, an exception object is created and thrown.

Catching an exception - Exception handlers (blocks of code) are
created to handle the different expected exception types. The
appropriate handler catches the thrown exception and performs the
code in the block.

Lecture 15CGS 3416 Spring 2017 Classes April 12, 2017 6 / 14



Claiming Exceptions

In a method, to claim an exception, use the keyword throws and list the
exceptions that may occur in the method. Examples:

public void myMethod() throws IOException

public void yourMethod() throws IOException, AWTException,

BobException

Lecture 15CGS 3416 Spring 2017 Classes April 12, 2017 7 / 14



Throwing Exceptions

Use the keyword throw, along with the type of exception being thrown.
An exception is an object, so it must be created with the new operator.
Examples:

throw new BadHairDayException();

MyException m = new MyException();

throw m;

if (personOnPhone != bubba)

throw new Exception("Stranger on the phone!!");

Notice that this is different than the keyword throws, which is used in
claiming exceptions.

Lecture 15CGS 3416 Spring 2017 Classes April 12, 2017 8 / 14



Catching Exceptions

Any group of statements that can throw and exception, or a group of
statements that you want to watch for Runtime or Error exceptions,
must be within a try block. At the end of the try block there must
be either a catch or a finally block.

A catch block has a parameter that is the type of exception this
catch block will handle. There can be several catch blocks for a try

block. If an exception is thrown then the first catch block that that
has a parameter matching the exception’s type will be the one that
catches the exception.

A finally block is ALWAYS executed no matter how control leaves a
try block. This will happen even if a return statement is executed in
the try block, and even if control passes to a catch block.

Lecture 15CGS 3416 Spring 2017 Classes April 12, 2017 9 / 14



Example

try

{
IO code opening and reading from/to files

}
catch (FileNotFoundException)

{
tell the user and probably repeat try block

}
catch (IOException)

{
blanket catch for all other IO problems

}
finally

{
make sure to close any files that might be open

}
Lecture 15CGS 3416 Spring 2017 Classes April 12, 2017 10 / 14



What happens if an exception is not caught?

If your method does not catch a checked exception and does not
declare that your method can throw it then the compiler will
complain.

If your method throws an exception, then the method that called your
method must handle the exception or declare that it can throw that
exception.

If no method handles the exception then the program crashes and a
message is printed out describing the exception.

The same happens if an unchecked exception should occur.

The only difference between a checked an unchecked exception is that
checked exceptions must be handled.

Lecture 15CGS 3416 Spring 2017 Classes April 12, 2017 11 / 14



Rethrowing exceptions

Writing code to handle exceptions is tedious and often you have no
idea what to do for error recovery.

It is sometimes easier just to re-throw the checked exception as an
unchecked exception.

Example:
catch (Exception e)

{
throw new RuntimeException(e);

}

Lecture 15CGS 3416 Spring 2017 Classes April 12, 2017 12 / 14



When to use exceptions?

Exceptions are not appropriate for all error-checking tasks.

Exceptions are good for situations in which the error doesn’t need to
be handled in the same block where it occurred.

Conventional error-checking is better for simple tests. For example,
validating user input falls into this category – it’s best to test user
input values with simple if-statements and loops.

Exceptions are good for handling errors that would result in
termination of the program, otherwise.

Lecture 15CGS 3416 Spring 2017 Classes April 12, 2017 13 / 14



Instance methods in exception objects

Exception objects are created from classes, which can have instance
methods.

There are some special instance methods that all exception objects
have (inherited from Throwable):

public String getMessage() – returns a detailed message about
the exception.
public String toString() – returns a short message describing the
exception.
public String getLocalizedMessage()

public void printStackTrace()

Lecture 15CGS 3416 Spring 2017 Classes April 12, 2017 14 / 14


