Inheritance J

Lecture 13
CGS 3416 Spring 2017

March 27, 2017

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 1/18



Subclasses and Superclasses

@ Inheritance is a technique that allows one class to be derived from
another.

@ A derived class inherits all of the data and methods from the original
class.
Example: Suppose that class Y is inherited from class X.
o class X is the superclass. Also known as base class or parent class.

@ class Y is the subclass. Also known as the derived class, or child
class, or extended class.

@ class Y consists of anything created in class Y, as well as everything
from class X, which it inherits

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 2 /18



Declaring a subclass

Use the keyword extends to declare the derived class.

Example 1

public class AAA // base class

{ ... }

public class BBB extends AAA // derived class

{ ... }

Example 2

public class Employee {...} // base class

public class HourlyEmployee extends Employee { ... } //

derived class

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 3/18



-
The keyword super

@ When you create a derived object, the derived class constructor needs
to invoke the base class constructor.

@ Do this with the keyword super — in this context, it acts as the call to
the base class constructor.
super(); // base class default constructor
super (parameters); //base class parametrized

constructor

@ The call to super () must be the first line of the derived class
constructor.

o If explicit call to parent constructor not made, the subclass’
constructor will automatically invoke super (). (the default
constructor of the base class, if there is one).

o Can also use super to invoke a method from the parent class (from
inside the derived class). Format:

super .method (parameters)

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 4 /18



|
Example

//class HourlyEmployee, derived from Employee
public class HourlyEmployee extends Employee
{

public HourlyEmployee() // default constructor

{
}

super(); // invokes Employee() constructor

public HourlyEmployee(double h, double r)
{

super(h,r); // invokes Employee constructor
w/ 2 parameters

// ... more methods and data

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 5/18



The protected modifier

@ Recall that public data and methods can be accessed by anyone, and
private data and methods can be accessed only by the class they are
in.

o protected data and methods of a public class can be accessed by any
classes derived from the given class (this is also true in C++).

@ In Java, a protected member can also be accessed by any class in the
same package (to be discussed later)

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 6 /18



The final modifier

In addition to creating constant variable identifiers, the keyword final can
be used for a couple of special purposes involving inheritance:

@ When used on a class declaration, it means that the class cannot be
extended. (i.e. it cannot become a parent class to a new subclass).

@ When used on a method declaration, it means that the method
cannot be overridden in a subclass. (i.e. this is the final version of the
method).

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 7 /18



-
Method Overriding

Although the derived class inherits all the methods from the base class, it
is still possible to create a method in the derived class with the same
signature as one in the base. Example:

@ Suppose a class Bird is derived from class Animal.

@ Animal has a method:
void Sleep() { ... }

@ We can define a method in class Bird with the same signature. The
derived class version will override the base class version, when called
through an object of type Bird.

Bird b = new Bird(); // create a
Bird object which has all the
Animal methods available.

b.Sleep(); // invokes the Sleep method from the
Bird class

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 8 /18



-
Method Overriding

Note that the Bird class’ Sleep() method can still invoke the superclass’
method, with the keyword super

public void Sleep()
{

super.Sleep(); // invoke parent’s Sleep()

// continue with any processing specific
to Bird

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 9 /18



-
Casting

When a class B extends a class A, then an instance of the B class is of
type B, but also of type A. Thus, such an instance can be used in all cases
where a class B or class A object is required.

However, the reverse is not true! An instance of the class A is of course of
type A, but it is not of type B.

Thus, we can use casting between the instances of classes. The cast inserts
a runtime check, in order for the compiler to safely assume that the cast is
used properly and is correct. If not, a runtime exception will be thrown.

Animal a2 = new Bird(); // create a
Bird object which has all the
Animal methods available.

a2.sleep(); //// invokes the Sleep method from the
Bird class

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 10 / 18



N
Abstract Classes

Superclasses are more general and subclasses are more specific.

Sometimes a base class is so general that it doesn't make sense to
actually instantiate it (i.e. create an object from it).

e Such a class is primarily a grouping place for common data and
behaviors of subclasses — an abstract class.

To make a class abstract, use the keyword abstract (which is a
modifier)
public abstract class Animal

Now that Animal is abstract, this would be illegal:
Animal s = new Animal();

(]

Specifically, it's new Animal () ; that is illegal.

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 11 /18



Methods can be abstract as well

An abstract method is a method signature without a definition.

Abstract methods can only be created inside abstract classes.

The main purpose of an abstract method is to be overridden in
derived classes (with the same signature)

o Example:
public abstract class Animal
// Animal is an abstract class

{

public abstract double eat();
// eat is an abstract method

// other methods and data

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 12 /18



-
The Object class

In Java, every class is derived automatically from a class called Object. If
no specific inheritance is declared for a class, it automatically has Object
as a superclass.

While there are several methods in class Object, here are three important
such methods, inherited by every Java class.

@ public boolean equals(Object object)
@ public String toString()
@ public Object clone()

Let's look at each.

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 13 /18



|
public boolean equals(Object object)

Tests whether two objects are equal. Returns true if equal, false if not.
objectl and object2 same class type.

objectl.equals(object2)
Default implementation is:

public boolean equals(Object obj)

{
}

return (this == obj);

Note that this default implementation is equivalent to the == operator,
since it only tests the reference variables for equality. The intent is that
subclasses of Object should override the equals method whenever they
want a test of equality of two objects’ contents.

Classes March 27, 2017 14 / 18



|
public String toString()

Returns a string that represents the object. Call format:
objectName.toString();

The default version of the string might not always be useful, but this can
be overridden in any derived class. Example for a class called Fraction:

public String toString()

{
}

return numerator + "/" + denominator;

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 15 / 18



|
public String toString()

Assuming the above function for a Fraction class, the following illustrates
its usage:

Fraction f1 = new Fraction(4,5);

// create the fraction 4/5
System.out.print(f1.toString());

// will print "4/5"

System.out.print (f1);

// also prints "4/5" as this always invokes
a class’ toString method

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 16 / 18



|
public Object clone()

Remember, direct assignment between object names will only copy one
reference variable to another. Use the clone() method to make copies of
objects.

newObject = someObject.clone();
Not all objects can be cloned. Only objects imeplementing the
java.lang.Cloneable interface (which will be discussed later) can use
the clone method.
The clone() method from the object class does a "shallow copy” (i.e.

copies reference variables verbatim). If a "deep copy” is needed (a la copy
constructors in C++), you should override clone () for a class.

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 17 / 18



-
Other methods from class Object

o finalize — called by garbage collector to perform to perform cleanup
on an object. Can be overridden, but rarely done.

@ getClass — returns an object of type Class, with information about
the calling object'’s type.

@ hashCode — returns hash value that can be used as a key for the
object (for use in a hash table, for example).

@ notify, notifyAll, wait — related to multithreading.

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 18 / 18



