
Inheritance

Lecture 13
CGS 3416 Spring 2017

March 27, 2017

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 1 / 18



Subclasses and Superclasses

Inheritance is a technique that allows one class to be derived from
another.

A derived class inherits all of the data and methods from the original
class.

Example: Suppose that class Y is inherited from class X.

class X is the superclass. Also known as base class or parent class.

class Y is the subclass. Also known as the derived class, or child
class, or extended class.

class Y consists of anything created in class Y, as well as everything
from class X, which it inherits

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 2 / 18



Declaring a subclass

Use the keyword extends to declare the derived class.
Example 1
public class AAA // base class

{ ... }

public class BBB extends AAA // derived class

{ ... }

Example 2
public class Employee {...} // base class

public class HourlyEmployee extends Employee { ... } //

derived class

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 3 / 18



The keyword super

When you create a derived object, the derived class constructor needs
to invoke the base class constructor.

Do this with the keyword super – in this context, it acts as the call to
the base class constructor.
super(); // base class default constructor

super(parameters); //base class parametrized

constructor

The call to super() must be the first line of the derived class
constructor.

If explicit call to parent constructor not made, the subclass’
constructor will automatically invoke super(). (the default
constructor of the base class, if there is one).

Can also use super to invoke a method from the parent class (from
inside the derived class). Format:

super.method(parameters)

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 4 / 18



Example

//class HourlyEmployee, derived from Employee

public class HourlyEmployee extends Employee

{
public HourlyEmployee() // default constructor

{
super(); // invokes Employee() constructor

}

public HourlyEmployee(double h, double r)

{
super(h,r); // invokes Employee constructor

w/ 2 parameters

}

// ... more methods and data

} // end class HourlyEmployeeLecture 13CGS 3416 Spring 2017 Classes March 27, 2017 5 / 18



The protected modifier

Recall that public data and methods can be accessed by anyone, and
private data and methods can be accessed only by the class they are
in.

protected data and methods of a public class can be accessed by any
classes derived from the given class (this is also true in C++).

In Java, a protected member can also be accessed by any class in the
same package (to be discussed later)

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 6 / 18



The final modifier

In addition to creating constant variable identifiers, the keyword final can
be used for a couple of special purposes involving inheritance:

When used on a class declaration, it means that the class cannot be
extended. (i.e. it cannot become a parent class to a new subclass).

When used on a method declaration, it means that the method
cannot be overridden in a subclass. (i.e. this is the final version of the
method).

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 7 / 18



Method Overriding

Although the derived class inherits all the methods from the base class, it
is still possible to create a method in the derived class with the same
signature as one in the base. Example:

Suppose a class Bird is derived from class Animal.

Animal has a method:
void Sleep() { ... }

We can define a method in class Bird with the same signature. The
derived class version will override the base class version, when called
through an object of type Bird.

Bird b = new Bird(); // create a

Bird object which has all the

Animal methods available.

b.Sleep(); // invokes the Sleep method from the

Bird class

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 8 / 18



Method Overriding

Note that the Bird class’ Sleep() method can still invoke the superclass’
method, with the keyword super

public void Sleep()

{
super.Sleep(); // invoke parent’s Sleep()

// continue with any processing specific

to Bird

}

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 9 / 18



Casting

When a class B extends a class A, then an instance of the B class is of
type B, but also of type A. Thus, such an instance can be used in all cases
where a class B or class A object is required.

However, the reverse is not true! An instance of the class A is of course of
type A, but it is not of type B.

Thus, we can use casting between the instances of classes. The cast inserts
a runtime check, in order for the compiler to safely assume that the cast is
used properly and is correct. If not, a runtime exception will be thrown.

Animal a2 = new Bird(); // create a

Bird object which has all the

Animal methods available.

a2.sleep(); //// invokes the Sleep method from the

Bird class
Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 10 / 18



Abstract Classes

Superclasses are more general and subclasses are more specific.

Sometimes a base class is so general that it doesn’t make sense to
actually instantiate it (i.e. create an object from it).

Such a class is primarily a grouping place for common data and
behaviors of subclasses – an abstract class.

To make a class abstract, use the keyword abstract (which is a
modifier)

public abstract class Animal

Now that Animal is abstract, this would be illegal:
Animal s = new Animal();

Specifically, it’s new Animal(); that is illegal.

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 11 / 18



Methods can be abstract as well

An abstract method is a method signature without a definition.

Abstract methods can only be created inside abstract classes.

The main purpose of an abstract method is to be overridden in
derived classes (with the same signature)

Example:
public abstract class Animal

// Animal is an abstract class

{
public abstract double eat();

// eat is an abstract method

// other methods and data

}

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 12 / 18



The Object class

In Java, every class is derived automatically from a class called Object. If
no specific inheritance is declared for a class, it automatically has Object
as a superclass.

While there are several methods in class Object, here are three important
such methods, inherited by every Java class.

public boolean equals(Object object)

public String toString()

public Object clone()

Let’s look at each.

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 13 / 18



public boolean equals(Object object)

Tests whether two objects are equal. Returns true if equal, false if not.
object1 and object2 same class type.

object1.equals(object2)

Default implementation is:

public boolean equals(Object obj)

{
return (this == obj);

}

Note that this default implementation is equivalent to the == operator,
since it only tests the reference variables for equality. The intent is that
subclasses of Object should override the equals method whenever they
want a test of equality of two objects’ contents.
Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 14 / 18



public String toString()

Returns a string that represents the object. Call format:
objectName.toString();

The default version of the string might not always be useful, but this can
be overridden in any derived class. Example for a class called Fraction:

public String toString()

{
return numerator + "/" + denominator;

}

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 15 / 18



public String toString()

Assuming the above function for a Fraction class, the following illustrates
its usage:

Fraction f1 = new Fraction(4,5);

// create the fraction 4/5

System.out.print(f1.toString());

// will print "4/5"

System.out.print(f1);

// also prints "4/5" as this always invokes

a class’ toString method

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 16 / 18



public Object clone()

Remember, direct assignment between object names will only copy one
reference variable to another. Use the clone() method to make copies of
objects.

newObject = someObject.clone();

Not all objects can be cloned. Only objects imeplementing the
java.lang.Cloneable interface (which will be discussed later) can use
the clone method.

The clone() method from the object class does a ”shallow copy” (i.e.
copies reference variables verbatim). If a ”deep copy” is needed (a la copy
constructors in C++), you should override clone() for a class.

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 17 / 18



Other methods from class Object

finalize – called by garbage collector to perform to perform cleanup
on an object. Can be overridden, but rarely done.

getClass – returns an object of type Class, with information about
the calling object’s type.

hashCode – returns hash value that can be used as a key for the
object (for use in a hash table, for example).

notify, notifyAll, wait – related to multithreading.

Lecture 13CGS 3416 Spring 2017 Classes March 27, 2017 18 / 18


