
Java Libraries

Lecture 8
CGS 3416 Spring 2017

February 13, 2017

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 1 / 15



Intro to Libraries

We’ve barely scratched the surface of Java, but before we proceed
with programming concepts, we need to talk about the Java API.

We would also like to be able to start using existing libraries in the
Java SDK as quickly as possible.

To that aim, this outline will provide ”just enough” to illustrate basic
core usage of existing Java class libraries.

The Java API can be found at
https://docs.oracle.com/javase/8/docs/api/

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 2 / 15

https://docs.oracle.com/javase/8/docs/api/


User vs. Builder

With any re-usable programming construct, we have two points-of-view
that should always be considered:

The builder is responsible for declaring and defining how some
module works.

The user (or caller) is somebody (i.e. some portion of code, often
some other module) that makes use of an existing module to perform
a task.

For the purposes of this topic (Using Java Libraries), we are looking
at things from the user’s perspective.

In other words, what do we need to know to use an existing Java
library from the SDK, along with it’s various already-defined features.

We will look at how to build things like functions, classes, interfaces, etc.
later on.

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 3 / 15



What’s in the Java SDK?

There are multiple kinds of library constructs to consider, including:

classes
interfaces
packages
classes and interfaces with generic type parameters

Classes and interfaces are grouped into packages.

packages are named into categories and subcategories, separated by
the dot-operator. Examples of packages:

java.lang

java.util

java.util.concurrent

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 4 / 15



What’s in the Java SDK?

If a class is inside a package, we can refer to the whole name by
referring to the package name, dot-operator, then class name.
Examples:

java.lang.String

java.util.Scanner

classes and interfaces can contain:

fields (i.e. data variables)
methods (i.e. member functions)

Right now, we will focus on the usage of class libraries.

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 5 / 15



The import Statement

If you are using any item from the package java.lang, you don’t
need to do anything special.

Everything from java.lang is automatically imported for use into
every Java program you write.

For a class out of any other package, you need to put an import
statement at the top of your file, to let the Java tools (compiler and
loader) know what libraries to pull in.

Basic form:
import <package name>.<class name>;

Examples:
import java.util.Scanner;

import javax.swing.JFrame;

import java.awt.geom.GeneralPath;

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 6 / 15



The import Statement

Wildcards - if you are going to be using many classes from the same
package, you can tell the compiler to import all classes from a single
package with the * wildcard character (meaning “all”), in place of a
single class name. Examples:

import javax.swing.*; // imports all classes in

javax.swing package

import java.util.*; // imports all classes in

java.util package

Note that in this last one, for example, it does not import all classes
in the sub-package java.util.concurrent. It only imports classes
directly inside the base package that is specified.

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 7 / 15



API Descriptions

The API description for a Java class gives all of the information you
need to be able to syntactically use it correctly.

Starts with description of the class, in a general documentation
format.

Field Summary
This section lists data fields that you might want to use
Often, these are constants, but not always
This chart lists the variable names, descriptions, and their types

Constructor Summary
This section lists the constructor methods that are available for this
class
Constructors are related to the creation of objects
This chart provides the parameter list for each constructor option

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 8 / 15



API Descriptions

Method Summary
This section lists the methods that are available for this class
For general class usage, this will typically be the most relevant set of
features that you will want to call upon
This chart provides the full prototype, or declaration, of each method
first column shows the return type, and whether the method is static or
not (more on this later)
Second column provides method name, as well as list of expected
parameters, and a short description

For all of these items, the names (of the variables, constructors, and
methods) are also links to more detailed descriptions of the items,
which are further down the page.

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 9 / 15



static fields and methods

Some fields and methods are declared as static

In the Field Summary and/or Method Summary, this information
would show up in the left column.

If a variable or method is not declared with the word static, then we
call it an instance variable or method.

To call upon variables or methods from a class, we use the
dot-operator syntax. There is a difference between static and instance
items, though.

For a static variable or method, we use this format:

className.fieldName // fields

className.methodName(arguments) // methods

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 10 / 15



java.lang.Math Library

API: java.lang.Math

Note that all fields and methods in this class are static

class Math has two fields, which are common mathematical
constants. Sample usage:
double area = Math.PI * radius * radius;

// compute area of a circle

Sample calls to static methods from Math:
area = Math.PI * Math.pow(radius, 2);

// area of circle, using power method

y = Math.abs(x);

// computes absolute value of x

System.out.print(Math.random());

// prints random value in range [0,1)

int die = (int)(Math.random() * 6) + 1;

// roll a standard 6-sided die

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 11 / 15



Instance Fields and Methods

Recall that an instance field or method is one that is not declared to
be static. Instance is the default.

To call upon instance fields or methods in a class library, you have to
create one or more objects from that class

A class is a blueprint for building objects.

Syntax for building an object:
className variable = new className(parameter(s));

In this format, the first part is the declaration of a reference variable
className variableName

new is a keyword of the language, and that part of the statement
builds a “new” object, and runs a special initialization function called
a constructor. This is what the parameters are for.

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 12 / 15



Examples

Scanner input = new Scanner(System.in);

JButton myButton = new JButton("Click Me");

String s1 = new String();

Once you have declared one or more objects, call upon fields and methods
with the dot-operator, as before, but for instance members, use the
object’s name (i.e. the reference variable) on the left of the dot:

objectName.fieldName // fields

objectName.methodName(arguments) // methods

Example uses:

int x = input.nextInt();

myButton.setText("Stop clicking me!");

System.out.print(s1.toUpperCase());

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 13 / 15



java.util.Random Library

API: java.util.Random

This library is for generating pseudo-random numbers

How computers do ”random” number generation

It’s really a “pseudo-random” generator
Start with a “seed” value
The seed is used as the input to an algorithm, which generates a
seemingly randomized number
Each “random” value generated becomes the seed for the next one
Start with the same seed, and you’ll get the same random numbers!

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 14 / 15



Some Examples

Creating objects of this type:
Random r1 = new Random();

// uses the system time to create seed

Random r2 = new Random(1234);

// uses 1234 as the seed

In the above statements, r1 and r2 refer to objects of type Random –
they both can generate a pseudo-random sequence of values

Sample calls to these objects:

int x = r1.nextInt(); // gets a random integer

int y = r1.nextInt(10);

// gets a random integer from 0-9

double z = r1.nextDouble();

// gets a random double in range [0,1)

Lecture 8 CGS 3416 Spring 2017 Selection February 13, 2017 15 / 15


