
Java Methods

Lecture 9
CGS 3416 Spring 2017

February 15, 2017

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 1 / 23

Java Methods

In Java, the word method refers to the same kind of thing that the
word function is used for in other languages.

Specifically, a method is a function that belongs to a class.

In Java, every function belongs to a class.

A function is a reusable portion of a program, sometimes called a
procedure or subroutine.

The properties of a method are:

It is like a mini-program (or subprogram) in its own right.
Can take in special inputs (arguments).
Can produce an answer value (return value).
Similar to the idea of a function in mathematics.

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 2 / 23

Why write and use functions?

Divide-and-conquer

Breaking up programs and algorithms into smaller, more manageable
pieces
This makes for easier writing, testing, and debugging
Also easier to break up the work for team development

Reusability

Functions can be called to do their tasks anywhere in a program, as
many times as needed
Avoids repetition of code in a program
Functions can be placed into libraries to be used by more than one
”program”

With methods (functions), there are 2 major points of view

Builder of the method – responsible for creating the declaration and
the definition of the method (i.e. how it works)
Caller – somebody (i.e. some portion of code) that uses the method to
perform a task

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 3 / 23

Using Methods

The user of a method is the caller.

Use a method by making calls to the method with real data, and
getting back real answers.

Consider a typical function from mathematics:
f(x) = 2x + 5

In mathematics, the symbol ’x’ is a placeholder, and when you run
the function for a value, you ”plug in” the value in place of x.
Consider the following equation, which we then simplify:

y = f(10) // must evaluate f(10)

y = 2 * 10 + 5 // plug in 10 for x

y = 20 + 5

y = 25 // so f(10) results in 25

In programming, we would say that the call f(10) returns the value 25.

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 4 / 23

Using Methods

Java methods work in largely the same way. General format of a Java
method call:

methodName(argumentList)

The argumentList is a comma-separated list of arguments (data being
sent into the method). Use the call anywhere that the returned
answer would make sense.

When calling a Java method from another class library, we have to
precede the call with the object name or the class name, depending
on whether the method is static or not:

className.methodName(argumentList)

// for static methods

objectName.methodName(argumentList)

// for instance methods

If a method is a member of the same class from which it is called
from, there is no need for a dot-operator on the call.

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 5 / 23

Example

There is a pre-defined Math class method called sqrt, which takes one
input value (of type double) and returns its square root. Sample calls:

double x = 9.0, y = 16.0, z;

z = Math.sqrt(36.0); //returns 6.0 (stored in z)

z = Math.sqrt(x); //returns 3.0 (stored in z)

z = Math.sqrt(x + y); //returns 5.0(stored in z)

System.out.print(Math.sqrt(100.0));

//returns 10.0, which gets printed

System.out.print(Math.sqrt(49));

//due to automatic type conversion rules

System.out.print(Math.sqrt(Math.sqrt(625.0)));

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 6 / 23

A special use of import for static methods

There is a special use of the keyword static for use in import
statements.

On an import statement, a programmer can import the static
methods of a class, so that the class name and dot-operator does not
have to be used in subsequent calls in the file.

For example, suppose we do this statement in our file:
import static java.lang.Math.sqrt;

The above would mean that anywhere in the file we call the sqrt
method, it’s specifically the one from the Math class.

In this case, we would not need to use the Math. syntax before each
call.

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 7 / 23

A special use of import for static methods

To import all static methods from a class this way, use the * wildcard
character.

For example:
import static java.lang.Math.*;

// import all static methods from Math

It’s best to use this sparingly.

If a code file is using multiple libraries, it can get confusing what class
different method calls are coming from, especially if multiple classes
have similarly named methods.

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 8 / 23

Building Methods

The builder of a method (a programmer) is responsible for the
prototype (or signature) of a method, as well as the definition (i.e.
how it works)

The structure of a method:

modifier(s) returnType methodName(parameter list)

// this is the signature

{
// method body (i.e. what it does,

how it works) -- the definition

}

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 9 / 23

Building Methods

The pieces:

methodName - identifier chosen by the builder.

parameter list - a comma-separated list of the parameters that the
method will receive.

This is data passed IN to the method by the caller.
The parameter list indicates the types, order, and number of
parameters.

returnType - the data type of the value returned by the method. A
method that returns no value should have return type void.

modifier(s) - optional labels that can specify certain properties or
restrictions on the method.

For now, we will use the modifier static on our methods.

method body - code statements that make up the definition of the
method and describe what the method does, how it works.

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 10 / 23

Returning values

To return a value (from the body of a method with a non-void return
type), use the keyword return, followed by an expression that
matches the expected return type:

return expression;

A return statement will force immediate exit from the method, and it
will return the value of the expression to the caller.

A method with a non-void return type needs to return an appropriate
value.

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 11 / 23

Method Examples

Here are two simple methods that do a math calculation and return a
result

public static int sum(int x, int y, int z)

// add the 3 parameters and return the result

{
int answer;

answer = x + y + z;

return answer;

}
public static double average (double a, double b,

double c)

//add parameters, divide by 3, return the result

{
return (a + b + c) / 3.0;

}
Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 12 / 23

More Examples

More than one return statement may appear in a function definition, but
the first one to execute will force immediate exit from the function.

boolean InOrder(int x, int y, int z)

// answers yes/no to the question "are these parameters in

order,

// smallest to largest?" Returns true for yes, false for

no.

{
if (x <= y && y <= z)

return true;

else

return false;

}

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 13 / 23

Some common mistakes

Examples of ILLEGAL syntax (common mistakes to watch out for):

double average(double x, y, z){ }
// Each parameter must list a type

printData(int x){ }
// missing return type

int double Task(int x) { }
// only one return type allowed!

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 14 / 23

Scope of Identifiers

The scope of an identifier (i.e. variable) is the portion of the code
where it is valid and usable

A variable declared within a block (i.e. a compound statement) of
normal executable code has scope only within that block.

Includes method bodies
Includes other blocks nested inside methods (like loops, if-statements,
etc)
Does not include some special uses of block notation to be seen later
(like the declaration of a class – which will have a separate scope issue)

Variables declared in the formal parameter list of a method definition
have scope only within that method.

These are considered local variables to the method.
Variables declared completely inside the method body (i.e. the block)
are also local variables.

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 15 / 23

void methods and empty parameter lists

Parameter lists

Mathematical functions must have 1 or more parameters
Java methods can have 0 or more parameters
To define a method with no parameters, leave the parentheses empty
Same goes for the call. (But parintheses must be present, to identify it
as a method call).

Return types

A mathematical function must return exactly 1 answer
A Java method can return 0 or 1 return value
To declare a method that returns no answer, use void as the return type
A void method can still use the keyword return inside, but not with an
expression (only by itself). One might do this to force early exit from a
method.
To CALL a void method, call it by itself – do NOT put it in the middle
of any other statement or expression

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 16 / 23

Sample Prototype

Here are some sample method prototypes:

char getALetter() // no parameters

void printQuotient(int x, int y) // void return type

void killSomeTime() // both

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 17 / 23

Functions and the compiler

The compiler will check all method CALLS to make sure they match
the expectations (which are described in the method signature)

method name must match
arguments passed in a call must match expected types and order
returned value must not be used illegally
static methods can be called through class name, but instance methods
only through an object

Decisions about parameters and returns are based on type-checking.

legal automatic type conversions apply when passing arguments into a
method, and when checking what is returned against the expected
return type

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 18 / 23

Pass By Value

Default mode of passing parameters into methods

Means that the parameter inside the method body is a copy of the
original argument that was passed in

Changes to the local parameter only affect the local copy, not the
original argument in the call

static int myMethod(int x, int y)

{
x = x * 2;

System.out.println("x = " + x);

y = y * 2;

System.out.println("y = " + y);

return x + y;

}

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 19 / 23

Pass by value

Sample call:
int a = 5, b = 8, ans;

ans = myMethod(a, b);

System.out.println("ans = " + ans);

System.out.println("a = " + a);

System.out.println("b = " + b);

Notice that the output of the code is:
x = 10

y = 16

ans = 26

a = 5

b = 8

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 20 / 23

Method Overloading

The term method overloading refers to the fact that it is perfectly
legal to have more than one method in the same class with the same
name, as long as they have different parameter lists.

The difference can be in the number of parameters, or in the types of
parameters.

Example:
int process(double num) { } // method 1

int process(char letter) { } // method 2

int process(int num, int pos) { } //method 3

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 21 / 23

Method Overloading

Notice that although all three methods above have the same exact
name, they each have a different parameter list.

Some of them differ in the number of parameters (2 parameters vs. 1
parameter), and the first two differ in types (double vs. char).

The compiler will distinguish which function to invoke based on what
is actually passed in when the function is called.

x = process(3.45,12); //invokes the third function

x = process(‘f’); // invokes the second function

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 22 / 23

Ambiguous Invocation

Because of method overloading and the legality of some automatic
type conversions, it is possible to make a call that could match two
methods (due to the type conversion issue). This will result in a
compiler error.

Example:
double sum(int x, double y);

double sum(double x, int y);

This pair of methods is legal, since the parameter lists differ. But the
following is an illegal call, due to ambiguous invocation:

System.out.print("The sum is " + sum(3, 4));

Lecture 9CGS 3416 Spring 2017 Methods February 15, 2017 23 / 23

