Stepwise Refinement J

Lecture 6
CGS 3416 Spring 2017

February 6, 2017

Lecture 6CGS 3416 Spring 2017 Loops February 6, 2017 1/17

Programming is about Problem Solving

@ Algorithm - a finite sequence of steps to perform a specific task
e To solve a problem, you have to come up with the necessary
step-by-step process before you can code it
e This is often the trickiest part of programming
@ Some useful tools and techniques for formulating an algorithm
o Top-down Refinement: Decomposing a task into smaller and simpler
steps, then breaking down each step into smaller steps, etc
e Pseudocode: Writing algorithms informally in a mixture of natural
language and general types of code statements

o Flowcharting: If you can visualize it, it's often easier to follow and
understand!

Lecture 6CGS 3416 Spring 2017 Loops February 6, 2017 2/17

Top-down Refinement

Printing a calendar for any given month.

PrintCalendar

readinput printMonth

I printMonthTitle | | printMonthBodyl

[getMonthName | | getstartDay |

[getTotalNumberOfDays |

|getNumberOfDaysInMonth |

isl eanYear |
Lecture 6CGS 3416 Spring 2017 Loops February 6, 2017 3/17

Example of a Pseudocode

Write down a pseudocode for the following problem:

The program gets a number from the user and then if it is less
100, it prints cheap; if it is less than 200, it prints acceptable,
else it prints expensive.

* Example Pseudocode:

1.

L U o

begin

Input price

If price < 100 then print “cheap”

Else if price < 200 then print “acceptable”
Else print “expensive”

end

Lecture 6CGS 3416 Spring 2017 Loops February 6, 2017

4 /17

Example of a Flow

Write a program to compute factorial of a number in Java

Lecture 6CGS 3416 Spring 2017

Chart

-

Factorial FlowChart W

©Javadlearners.com

Loops

February 6, 2017

5/17

Programming is about Problem Solving

@ Testing - algorithms must also be tested!
e Does it do what is required?
e Does it handle all possible situations?
@ Syntax vs. Semantics

e Syntax — the grammar of a language.
A syntax error: "l is a programmer.”
e Semantics — the meaning of language constructs
Correct syntax, but a semantic error: " The car ate the lemur.”

Lecture 6CGS 3416 Spring 2017 Loops February 6, 2017 6 /17

Top-Down Stepwise Refinement

Top down stepwise refinement is a useful problem-solving technique that is
good for coming up with an algorithm.

Learning syntax is all well and good, but programming is really about
problem-solving, and it takes practice.

Here's the general idea of thinking through an algorithm with stepwise
refinement:

@ Start with the initial problem statement
Break it into a few general steps

Take each "step”, and break it further into more detailed steps

Keep repeating the process on each "step”, until you get a breakdown
that is pretty specific, and can be written more or less in pseudocode

Translate the pseudocode into real code

Lecture 6CGS 3416 Spring 2017 Loops February 6, 2017 7 /17

Example

Problem Statement: Determine the class average for a set of test
grades, input by the user. The number of test grades is not known in
advance (so the user will have to enter a special code — a “sentinel” value
— to indicate that they're finished typing in grades).

Initial breakdown into steps
@ Declare and initialize variables

@ Input grades (prompt user and allow input)

© Compute class average and output result

Lecture 6CGS 3416 Spring 2017 Loops February 6, 2017 8 /17

Example

Now, breaking down the "compute” step further, we get:
Compute:

© add the grades
@ count the grades
© divide the sum by the count

We realize this would be a problem, because to do all input before doing
the sum and the count would require us to have enough variables for all
the grades (but the number of grades to be entered is not known in
advance). So we revise our breakdown of “steps”.

Don't be afraid to go back and revise something if the initial plan runs
into a snag!

Lecture 6CGS 3416 Spring 2017 Loops February 6, 2017 9 /17

|
Revised breakdown of steps

© Declare and initialize variables
@ Input grades -- count and add them as they are input
© Compute class average
Breaking the steps into smaller steps
So, now we can break down these 3 steps into more detail. The input step

can roughly break down this way:
loop until the user enters the sentinel value

© prompt user to enter a grade (give them needed info,
like -1 to quit)

@ allow user to type in a grade (store in a variable)
© add the grade into a variable used for storing the sum
o

add 1 to a counter (to track how many grades)

Lecture 6CGS 3416 Spring 2017 Loops February 6, 2017 10 / 17

Further Refinement

We could specifically write this as a while loop or as a do-while loop. So
one more refining step would be a good idea, to formulate the pseudo-code
more like the actual code we would need to write. For example:

do

©@ prompt user to enter a grade (give them needed info,
like -1 to quit)

@ allow user to type in a grade (store in a variable)

© add the grade into a variable used for storing the sum

@ add 1 to a counter (to track how many grades)

while user has NOT entered the sentinel value (-1 would be
good)

Lecture 6CGS 3416 Spring 2017 Loops February 6, 2017 11 /17

Further Refinement

If we look at this format, we realize that the "adding” and " counting”
steps should only be done if the user entry is a grade, and NOT when it's

the sentinel value. So we can add one more refinement:
do

© prompt user to enter a grade (give them needed info,
like -1 to quit)

@ allow user to type in a grade (store in a varaible)

© if the entered value is a GRADE (not the sentinel
value)
add the grade into a variable used
for storing the sum
add 1 to a counter (to track how many
grades)
while user has NOT entered the sentinel value (-1 would be
good)
Loops

February 6, 2017 12 /17

Some Notes on the breakdown

This breakdown helps us see what variables are needed, so the declare
and initialize variables step can be now made more specific:
initialize variables:

©Q a grade variable (to store user entry)
Q@ a sum variable (initialized to 0)
© a counter (initialized to 0)
And the compute answer and print step becomes:
© divide sum by counter and store result

©Q print result

Lecture 6CGS 3416 Spring 2017 Loops

February 6, 2017 13 /17

-
Putting it all together

initialize variables:

©Q a grade variable (to store user entry)
@ a sum variable (initialized to 0)

© a counter (initialized to 0)

Lecture 6CGS 3416 Spring 2017 Loops February 6, 2017 14 /17

-
Putting it all together

grade entry:

do

© prompt user to enter a grade (give them needed info,
like -1 to quit)
@ allow user to type in a grade (store in a varaible)
© if the entered value is a GRADE (not the sentinel
value)
add the grade into a variable used
for storing the sum
add 1 to a counter (to track how many
grades)

while user has NOT entered the sentinel value (-1 would be
good)

Lecture 6CGS 3416 Spring 2017 Loops February 6, 2017

15 / 17

-
Putting it all together

compute average:

© divide sum by counter and store result

©Q print result

Lecture 6CGS 3416 Spring 2017 Loops February 6, 2017 16 / 17

N
What's left to do?

@ It would be a good idea to refine the last step (compute and print
average) more specifically, since it's possible for the user to type the
sentinel value without entering any grades.

e In this case, you don’t want to divide by "counter”, because that would
be 0. This step should account for this possibility. (i.e. if the user has
entered no grades, just print a message to that effect).

e Otherwise, compute and print the average.

@ Once the steps reach this level of detail, the pseudocode can be
translated to real code. This is left as an exercise.

Lecture 6CGS 3416 Spring 2017 Loops February 6, 2017 17 /17

