
Intro to Strings

Lecture 7
CGS 3416 Spring 2017

February 13, 2017

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 1 / 16



Strings in Java

In Java, a string is an object. It is not a primitive type.

The String class is used to create and store immutable strings.

Immutable objects are objects that don’t change once created.
Kinda like “final” primitive types.

Class StringBuilder creates objects that store flexible and changeable
strings.

We’ll learn this later on in the course.

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 2 / 16



The String class

Part of java.lang package

13 constructors and close to 50 methods

String class API from java.oracle.com – full listing of String class
features

Once you build a String object, it is fixed – it cannot be changed.

This is easier than it sounds. The only methods that can alter or set
the instance variables are the constructors. All other methods that
seem to change a string do so by returning a brand new String object
You can assign a String reference variable to a new string, discarding
the old one

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 3 / 16



A common way to construct a String

One constructor allows the use of a string literal as the parameter.
Example string constructions:
String greeting = new String("Hello, World!");

String name = new String("Marvin Dipwart");

String subject = new String("Math");

// also, a shorthand notation for building strings

String sentence = "The quick brown fox sat around for

a while";

// this is not quite equivalent to using the

//constructor above, but you still get a string

//variable (which is what we care about right now)

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 4 / 16



Empty Strings

The constructor with no parameters allows the building of an empty string:

String s = new String();

// s refers to an empty string object

Note that if you only declare a String variable, but you do not assign it to
anything, it is not yet attached to any string:

String s1; // s1 does not refer to any string yet

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 5 / 16



The equals() method

equals() – for comparing two strings (i.e. their contents), returns true or
false

if (str1.equals(str2))

System.out.print("The strings are the same");

equalsIgnoreCase() - just like equals(), except that the case of the letters
doesn’t matter in making a match. For instance, ”Apple” would be equal
to ”apple” with this method.

Don’t try to compare strings by using ==, <, >, etc. These would only
compare the String reference variables, not the String objects themselves.

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 6 / 16



The compareTo() method

compareTo() – also for comparing two strings, good for sorting.

if (str1.compareTo(str2) <0)
System.out.print("str1 comes before str2 in

lexicographic ordering");

else if (str1.compareTo(str2) == 0)

System.out.print("str1 is the same as str2");

else if (str1.compareTo(str2) >0)
System.out.print("str2 comes before str1 in

lexicographic ordering");

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 7 / 16



What we know so far

In Java, a string is an object.

The String class is used to create and store immutable strings.

Some String class methods we have used before:

equals() – for comparing two strings (i.e. their contents), returns
true or false.
equalsIgnoreCase() - just like equals(), except that the case of
the letters doesn’t matter in making a match.
compareTo() – also for comparing two strings, good for sorting.

Don’t try to compare strings by using ==, <, >, etc. These would
only compare the String reference variables, not the String objects
themselves.

Other comparison methods include regionMatches, startsWith,

and endsWith. See String class API for full details.

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 8 / 16



Concatenation

concat() – String concatenation. Returns a concatenation of two
strings.

String s1 = "Dog";

String s2 = "food";

String s3 = s1.concat(s2);

//s3 now stores "Dogfood"

//note: s1 and s2 are NOT changed

The + symbol also performs String concatenation (as we’ve already
used in print statements).

String s1 = "Cat";

String s2 = "nap";

String s3 = s1 + s2;

//s3 now stores "Catnap" (s1, s2 unchanged)

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 9 / 16



Substrings

substring() – extracts part of a string and returns it.

Takes in two parameters (begin index and end index) or 1 parameter
(begin index).

First character in a String has index 0. Substring returned is the index
range [begin,end).

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 10 / 16



Substrings

String s1 = "Hello, World";

String s2 = s1.substring(0,5);// s2 is now "Hello".

// picks up indices 0 - 4

String s3 = s1.substring(0,7) + "Dolly";

System.out.print(s3);// prints "Hello, Dolly"

System.out.print(s3.substring(4));//prints "o, Dolly"

// can even use substring on string literals

String s4= "What’s up doc?".substring(10,13);

// s4="doc"

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 11 / 16



String length

length() – returns a string’s length (number of characters).

String s1 = "Hello";

String s2 = "Goodbye world";

System.out.print(s1.length()); // output: 5

System.out.print(s2.length()); // output: 13

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 12 / 16



charAt() method

charAt() – returns a specific character, given an index.

String s1 = "Rumplestiltskin";

System.out.print(s1.charAt(0)); // output: R

System.out.print(s1.charAt(5)); // output: e

System.out.print(s1.charAt(12)); // output: k

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 13 / 16



Some Conversion methods

toLowerCase() – returns all lower case version of string

toUpperCase() – returns all upper case version of string

trim() – returns a string that eliminates leading and trailing blank
characters from original

replace() – returns a string with an old character replaced with a
new one. old character and new character passed as parameters

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 14 / 16



Examples

String s1 = "Zebra

String s2 = s1.toLowerCase(); // s2 is "zebra"

String s3 = s1.toUpperCase(); // s3 is "ZEBRA"

String s4 = " Apple ";

String s5 = s4.trim(); // s5 is "Apple"

String s6 = s5.replace(‘e’, ‘y’); // s6 is "Apply"

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 15 / 16



valueOf() method

valueOf() – there are several of these methods.

They are static methods, and are used for converting other values to
String objects

int x = 12345;

String s7 = String.valueOf(4.56); // s7 is "4.56"

String s8 = String.valueOf(16); // s8 is "16"

String s9 = String.valueOf(x); // s9 is "12345"

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 16 / 16


