Intro to Strings J

Lecture 7
CGS 3416 Spring 2017

February 13, 2017

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 1/16



Strings in Java

@ In Java, a string is an object. It is not a primitive type.

@ The String class is used to create and store immutable strings.

o Immutable objects are objects that don't change once created.
e Kinda like “final” primitive types.

@ Class StringBuilder creates objects that store flexible and changeable

strings.
o We'll learn this later on in the course.

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 2 /16



-
The String class

@ Part of java.lang package
@ 13 constructors and close to 50 methods
@ String class API from java.oracle.com — full listing of String class

features
@ Once you build a String object, it is fixed — it cannot be changed.

o This is easier than it sounds. The only methods that can alter or set
the instance variables are the constructors. All other methods that
seem to change a string do so by returning a brand new String object

e You can assign a String reference variable to a new string, discarding
the old one

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 3/16



A common way to construct a String

One constructor allows the use of a string literal as the parameter.
Example string constructions:

String greeting = new String("Hello, World!");

String name = new String("Marvin Dipwart");

String subject = new String("Math");

// also, a shorthand notation for building strings

String sentence = "The quick brown fox sat around for
a while";

// this is not quite equivalent to using the

//constructor above, but you still get a string
//variable (which is what we care about right now)

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 4 /16



-
Empty Strings

The constructor with no parameters allows the building of an empty string:

String s = new String(Q);
// s refers to an empty string object

Note that if you only declare a String variable, but you do not assign it to
anything, it is not yet attached to any string:

String s1; // sl does not refer to any string yet

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 5/ 16



|
The equals() method

equals() — for comparing two strings (i.e. their contents), returns true or
false

if (strl.equals(str2))
System.out.print("The strings are the same");

equalslgnoreCase() - just like equals(), except that the case of the letters
doesn't matter in making a match. For instance, " Apple” would be equal

to "apple” with this method.

Don't try to compare strings by using ==, <, >, etc. These would only
compare the String reference variables, not the String objects themselves.

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 6 /16



|
The compareTo() method

compareTo() — also for comparing two strings, good for sorting.

if (strl.compareTo(str2) <O0)
System.out.print("strl comes before str2 in
lexicographic ordering");
else if (strl.compareTo(str2) == 0)
System.out.print("strl is the same as str2");
else if (strl.compareTo(str2) >0)
System.out.print("str2 comes before strl in
lexicographic ordering");

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 7 /16



What we know so far

In Java, a string is an object.

The String class is used to create and store immutable strings.

Some String class methods we have used before:

e equals() — for comparing two strings (i.e. their contents), returns
true or false.

e equalsIgnoreCase() - just like equals(), except that the case of
the letters doesn't matter in making a match.

o compareTo() — also for comparing two strings, good for sorting.

Don't try to compare strings by using ==, <, >, etc. These would
only compare the String reference variables, not the String objects
themselves.

@ Other comparison methods include regionMatches, startsWith,
and endsWith. See String class API for full details.

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 8 /16



Concatenation

@ concat () — String concatenation. Returns a concatenation of two

strings.

String sl = "Dog";

String s2 = "food";

String s3 = sl.concat(s2);

//s3 now stores "Dogfood"
//note: sl1 and s2 are NOT changed
@ The + symbol also performs String concatenation (as we've already
used in print statements).

String sl = "Cat";
String s2 = "nap";
String s3 = sl + s2;
//s3 now stores "Catnap" (sl, s2 unchanged)

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 9 /16



-
Substrings

@ substring() — extracts part of a string and returns it.

@ Takes in two parameters (begin index and end index) or 1 parameter
(begin index).

o First character in a String has index 0. Substring returned is the index
range [begin,end).

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 10 / 16



Substrings
String s1 = "Hello, World";
String s2 = sl.substring(0,5);// s2 is now "Hello".

String

System.
System.

// can
String

// picks up indices 0 - 4

s3 = sl.substring(0,7) + "Dolly";
out.print(s3);// prints "Hello, Dolly"
out.print(s3.substring(4));//prints "o, Dolly"

even use substring on string literals
s4= "What’s up doc?".substring(10,13);
// s4="doc"

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017

11/ 16



-
String length

@ length() — returns a string’s length (number of characters).

String sl = "Hello";
String s2 = "Goodbye world";

System.out.print(sl.length()); // output: 5
System.out.print(s2.length()); // output: 13

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 12 / 16



|
charAt() method

@ charAt () — returns a specific character, given an index.
String s1 = "Rumplestiltskin";
System.out.print(sl.charAt(0)); // output: R

System.out.print(sl.charAt(5)); // output: e
System.out.print(sl.charAt(12)); // output: k

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 13 / 16



Some Conversion methods

@ toLowerCase() — returns all lower case version of string
@ toUpperCase() — returns all upper case version of string

@ trim() — returns a string that eliminates leading and trailing blank
characters from original

@ replace() — returns a string with an old character replaced with a
new one. old character and new character passed as parameters

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 14 / 16



Examples

String sl = "Zebra

String s2 = sl.toLowerCase(); // s2 is "zebra"
String s3 = sl.toUpperCase(); // s3 is "ZEBRA"
String s4 = " Apple ";

String sb = s4.trim(); // s5 is "Apple"
String s6 = sb5.replace(‘e’, ‘y’); // s6 is "Apply"

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017

15 / 16



|
valueOf() method

@ valueOf () — there are several of these methods.
@ They are static methods, and are used for converting other values to
String objects

int x = 12345;

String s7 = String.value0f(4.56); // s7 is "4.56"
String s8 = String.value0f(16); // s8 is "16"
String s9 = String.valueOf(x); // s9 is "12345"

Lecture 7 CGS 3416 Spring 2017 Intro to Strings February 13, 2017 16 / 16



