
Graphics and Painting

Lecture 17
CGS 3416 Spring 2016

April 17, 2017

Lecture 17CGS 3416 Spring 2016 Classes April 17, 2017 1 / 12



paint() methods

Lightweight Swing components that extend class JComponent have a
method called paintComponent, with this prototype:

public void paintComponent(Graphics g)

Another similar method is the paint method in class Component (and
thus all its children) with this prototype:

public void paint(Graphics g)

The JComponent version of paint() actually delegates its work to
three methods: paintComponent, paintBorder, and
paintChildren

Lecture 17CGS 3416 Spring 2016 Classes April 17, 2017 2 / 12



paint() methods

The idea behind paint() is that they are invoked for any component
automatically whenever that component needs to be drawn or
re-drawn. Some examples of triggering events:

When the component first is placed on the application.
When the component is resized.
When the component is covered by some other application, then
uncovered and comes to the forefront again.

Since this is triggered by such events, the programmer seldom needs
to call paint() or paintComponent() explicitly.

The programmer can call repaint() (also a Component method) to
force the paint operation, if the need arises (i.e. some situation not
covered by the automatic calls to paint().

Lecture 17CGS 3416 Spring 2016 Classes April 17, 2017 3 / 12



More on paint()

These methods both take as a parameter a reference variable of type
Graphics – which is an abstract class.

The object will be a subtype that handles the drawing context for the
given platform.

For Swing components, it is usually sufficient to just define
paintComponent() for drawing aspects, unless you want to control
the other parts (border, children) as well.

So, what can we DO in the paint() or paintComponent()
methods? Pretty much anything that’s available in the Graphics class,
and then some.

Lecture 17CGS 3416 Spring 2016 Classes April 17, 2017 4 / 12



class Graphics and other useful helper classes

The Graphics Class

Helps manage drawing on the screen for GUI applications and applets.

Keeps track of state information like current font, current color, the
Component object being drawn on, and more.

Has methods for drawing various kinds of shapes (lines, ovals,
polygons, rectangles, etc) as well as strings.

Also has methods for setting the font, the color, the current clipping
area, the paint mode, and other status information.

Lecture 17CGS 3416 Spring 2016 Classes April 17, 2017 5 / 12



The Color Class

Used for specifying colors in components and drawings.

Colors stored and specified with RGB (Red Green Blue) values.

RGB values can be specified with ints (0-255) or floats (0.0-1.0).

Color constants exist for common colors (Color.BLUE, Color.GREEN,
etc).

To find out or set the current drawing color, use the Graphics
methods getColor() and setColor(). Example:

g.setColor(Color.MAGENTA);

g.setColor(new Color(255, 128, 3)); //RGB values

JColorChooser - a javax.swing component that enables
application users to choose colors.

Lecture 17CGS 3416 Spring 2016 Classes April 17, 2017 6 / 12



The Font Class

Specify fonts used in Graphics drawings.

Physical fonts are actual fonts on a system – these depend on
platform and what fonts are installed on a system.

Logical fonts are the 5 font families supported in Java: Serif, Sans
Serif, Monospaced, Dialog, and DialogInput. When using logical
fonts, an appropriate font on the given system will be chosen.

Font constructor takes three parameters: font name, font style, font
size

Font name can be physical or logical.
Font styles are plain, italics, or bold.
Font size measured in points.

Lecture 17CGS 3416 Spring 2016 Classes April 17, 2017 7 / 12



Font Examples

To set or find out the current drawing font, use the Graphics

methods getFont() and setFont(). Example:

Font f = g.getFont(); // retrieve current font

g.setFont(new Font("Serif", Font.ITALICS, 12));

Other methods available in class Font to set or retrieve properties for
a Font object.

Lecture 17CGS 3416 Spring 2016 Classes April 17, 2017 8 / 12



The FontMetrics class

Abstract class. Encapsulates information and properties about the
rendering of a font on screen.

Helps track more specific font information like height, descent,
ascent, and leading (interline spacing).

Graphics class has a couple of methods named

getFontMetrics():

FontMetrics m1, m2;

m1 = g.getFontMetrics(); //current font info

m2 = g.getFontMetrics(f1); //info about font f1

Lecture 17CGS 3416 Spring 2016 Classes April 17, 2017 9 / 12



The Polygon Class

Helper class for representing information about Polygons.

Stores a list of (x,y) coordinate pairs, representing vertices of a
polygon.

Several Graphics class methods are for drawing polygons -
drawPolygon(), drawPolyLine, fillPolygon.

There are versions of these last two that take a Polygon object as a
parameter.

Lecture 17CGS 3416 Spring 2016 Classes April 17, 2017 10 / 12



Java2D

The Java2D API provides advanced graphics capabilities, for more detailed
and complex two-dimensional drawing.

Allows more complex drawing, like lines of varying thickness, filling
shapes with colors and patterns, drawing dashed lines, composite
overlapping text and graphics, gradients and textures, and more.

Need to use an instance of class Graphics2D, which is a subclass of
class Graphics.

Must cast the Graphics object in the paintComponent() method
into a Graphics2D reference when using:

Graphics2D g2d = (Graphics2D) g;

For more details, look up the class on the Oracle Java Documentation
website.

Lecture 17CGS 3416 Spring 2016 Classes April 17, 2017 11 / 12



Java2D Packages

Java2D involves a variety of packages:

java.awt

java.awt.image

java.awt.color

java.awt.font

java.awt.geom

java.awt.print

java.awt.image.renderable

Lecture 17CGS 3416 Spring 2016 Classes April 17, 2017 12 / 12


