Homework Assignment \#2 - MIPS Instructions
 CDA 3100, Computer Organization I

Submission: A hard copy required.

Problem 1 ($\mathbf{3 0}$ points) Exercise 2.4.1(p. 182).
The following problems deal with translating from C to MIPS. Assume that the variables f, g, h are assigned to registers $\$ s 0, \$ s 1, \$ s 2$, respectively. Assume that the base address of the arrays A and B are registers $\$ s 6$ and $\$ s 7$, respectively.
a. $f=g+h+B[4]$;
b. $f=g-A[B[4]]$;
2.4.1. For the C statements above, what is the corresponding MIPS assembly code?

Problem 2 (10 points) Exercise 2.16.1 (p. 194).
For these problems, there are various binary values for register $\$ t 0$. Given the value for $\$ t 0$, you will be asked to evaluate the outcome of different branches.
a. 10101101000100000000000000000010 two
b. $11111111111111111111111111111111_{\text {two }}$
2.16.1. Suppose that the register $\$ t 0$ contains a value from the above and $\$ t 1$ has the value 00111111111110000000000000000000 two

What is the value of $\$ t 2$ after the following instructions?

```
    slt $t2, $t0, $t1
beq $t2, $zero, ELSE
j DONE
ELSE: addi $t2, $zero, 2
```

DONE:

Problem 3 (40 points) Exercise 2.18.2. (p. 196).
For these problems, you are given some C code. You will be asked to evaluate these C code in MIPS assembly code.

```
a. for(i=0;i<10;i++)
    a+=b;
b. while (a<10){
    D[a] = b+a;
    a+=1;
    }
```

2.18.2. For the code above, translate the C code to MIPS assembly code. Use a minimum number of instructions (I won't take off points, but you should try to complete this in a few instructions as possible to prepare for the midterm). Assume that the value of a, b, i are in registers $\$ s 0$, $\$ s 1, \quad \$ t 0$ respectively. Also, assume that register $\$ s 2$ holds the base address of the array D.

Problem 4 (20 points) Encode the following MIPS instructions. For each instruction, you should identify the format type (R, I, or J format) and the decimal values of each field and then give the hexadecimal representation. (You may find the Appendix B helpful (pp. B-49-B-80), where the encoding of MIPS instructions is described in detail.)

```
1) addi $s1, $s3, 3 # $s1 is register 17, $s3 is register 19
2) sw $s1, 12($sp) # $s1 is register 17, $sp is register 29
3) add $t2, $s3, $s4 # $t2 is register 10, $s3 is register 19, $s4
is register 20
```

