Assignment \#5 - Digital Logic Design I - Combinational Logic

CDA 3100, Computer Organization I
Problem 1 (40 points) Design a circuit that takes three bits X2, X1, X0, as input, and output one bit O as output. O is 1 if and only if $2<=X<=5$ when $X=(X 2, X 1, X 0)$ is read as an unsigned integer.
(a) Complete the truth table.

X2	X1	X0	O
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	
1			
1			

(b) Write down the sum-of-product form of the function without any simplification in the format as: $\mathrm{O}=(\mathrm{X} 2 \& \mathrm{X} 1 \& \mathrm{X} 0)|(\sim \mathrm{X} 2 \& \mathrm{X} 1 \& \mathrm{X} 0)| \ldots$ (this is NOT the answer).
$\mathrm{O}=$
(c) Simplify the circuit using Karnaugh-map.

P2X1	00	01	11	10
0				
1				

(d) Write down the Verilog module for this circuit called module HW5P1 (X2, X1, X0, O).
(e) A Verilog code has been provided for this homework with an empty HW5P1 module. Please replace this module with your module and run simulation. Copy and paste the waveform only related to this problem here. One way to copy and paste is: 1) print screen, 2) paste the screen to the windows paint program, 3) crop the waveform, and 4) paste it here.

Problem 2 (40 points) Design a circuit that takes three bits A, B, S as input, and output one bit O as output. If $S=0, O=A \mid B$. If $S=1, O=A \& B$.
(a) Complete the truth table.

S	A	B	O
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	
1			
1			

(b) Write down the sum-of-product form of the function without any simplification in the format as: $\mathrm{O}=(\mathrm{A} \& \mathrm{~B} \& \mathrm{~S})|(\mathrm{A} \& \mathrm{~B} \& \sim \mathrm{~S})| \ldots$ (this is NOT the answer)
$\mathrm{O}=$
(c) Simplify the circuit using Karnaugh-map.

	00	01	11	10
0				
1				

(d) Write down the Verilog module for this circuit called module HW5P2 (S, A,B,O).
(e) A Verilog code has been provided for this homework with an empty HW5P2 module. Please replace this module with your module and run simulation. Copy and paste the waveform only related to this problem here.

Problem 3 (10 points) Design a comparator which has 6 input bits, A2, A1, A0 and B2, B1, B0, and one output bit O . Let $\mathrm{A}=(\mathrm{A} 2, \mathrm{~A} 1, \mathrm{~A} 0)$ and $\mathrm{B}=(\mathrm{B} 2, \mathrm{~B} 1, \mathrm{~B} 0)$, and regard them as unsigned integers. If $A>B, O=1$; else $O=0$. Please write down the logic function as your answer. No Verilog code or simulation is needed. Hint: This problem should be solved by analyzing the underlying logic and no Karnaugh-map is needed. For example, if $\mathrm{A} 2=1$ and $\mathrm{B} 2=0$, O must be 1 and there is no need to check the values of other input bits.

Problem 4 (10 points) We talked about multiplexors in the class. A 4-1 multiplexor has 6 inputs $\mathrm{S} 1, \mathrm{~S} 0$, d3, d2, d1, and d0, and has one output O . It works as follows. If $\mathrm{S} 1 \mathrm{~S} 0=00, \mathrm{O}=\mathrm{d} 0$. If $\mathrm{S} 1 \mathrm{~S} 0=01, \mathrm{O}=\mathrm{d} 1$. If $\mathrm{S} 1 \mathrm{~S} 0=10, \mathrm{O}=\mathrm{d} 2$. If $\mathrm{S} 1 \mathrm{~S} 0=11, \mathrm{O}=\mathrm{d} 3$. Show how to use only one $4-1$ multiplexor to implement function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ with truth table shown below. No any other gates should be used, including the inverter; meaning that the inputs to the 4-1 multiplexor can only be from $\mathrm{A}, \mathrm{B}, \mathrm{C}, 0$, or 1 . Please finish the following figure, showing each input of the 4-1 multiplexor is connected to which one among $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{0}$, or $\mathbf{1}$, as your answer. No Verilog code or simulation is needed. For this problem, no Karnaugh-map is needed.

A	B	C	O
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

The Verilog code that will be needed in this homework is:
http://ww2.cs.fsu.edu/~dennis/cda3100_summer_2013/homework/hwk5.v
Instructions about the Verilog Simulator can be found in slides Week8-day1.

