Assignment \#6 - Digital Logic Design II - Sequential Logic

CDA 3100, Computer Organization I

Download Hw6.v at http://ww2.cs.fsu.edu/~dennis/cda3100_summer_2013/homework/hwk6.v
For this homework, you need to fill in module HW6P1 (clk, Q) and module HW6P2 (clk, X, O) in HW6.v. No other part of HW6.v needs to be changed.

Problem 1 (50 points) Design a circuit that has an input clk, and an output Q which has three bits. At the rising edge of the clk, the unsigned binary number represented by Q changes according to the pattern: $04273651042736510 \ldots$ In other words, it starts with 0 and repeats 04273651 every 8 clock cycles.
(a) (10 points) Write down the next-state table.

Q2	Q1	Q0	D2	D1	D0
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1				

(b) (10 points) Use Karnaugh map, derive the function for D2, D1, and D0.

D2 $=$

(c) (10 points) Write down a Verilog module for this circuit. Use the following code as a template.

```
module HW6P1 (clk, Q);
    input clk;
    output [2:0] Q;
```

```
    wire Q2, Q2bar, Q1, Q1bar, Q0, Q0bar, D2, D1, D0;
    assign DO =??;
Dff1 C0 (D0, clk, Q0, Q0bar);
assign D1 = ??;
Dff1 C1 (D1, clk, Q1, Q1bar);
assign D2 = ??;
Dff1 C2 (D2, clk, Q2, Q2bar);
assign Q[2] = Q2;
assign Q[1] = Q1;
assign Q[0] = Q0;
endmodule
```

(d) (10 points) Run the simulation, and show the waveform here. Please only show the signals relevant to this problem. That is, please show only the clock and Q as an unsigned (3-bit) number. Points will be taken off if this requirement is not satisfied.
(e) (10 points) Add one input "clr" to the circuit. If clr is 1 , the circuit functions as previously. If "clr" is $0, \mathrm{Q}$ is set to be 0 at the next rising edge. For this problem, just show the logic functions for D2, D1, and D0.

Problem 2 (50 points) Design a circuit that has two inputs, clk and X, and produces one output O. X may change every clock cycle, and the change happens at the falling edge. The circuit samples the input at every rising edge of the clock. If the input is 1 , consider as read a 1 , else read a $0 . \mathrm{O}$ is 1 (for one clock cycle, from positive edge to positive edge) if the last three bits read are 100 , with 0 as the most recent bit.
(a) (20 points) Draw the state diagram. Close to an arc, show $\mathrm{X}=1$ or $\mathrm{X}=0$ to indicate whether the change of state happens when $X=1$ or when $X=0$.

(b) (10 points) Draw the next-state table, and derive the functions for D1 and D0. Derive the output function.

Q1	Q0	X	D1	D0
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		

(c) (10 points) Write down a Verilog module for this circuit. Use the following code as a template.

```
module HW6P2 (clk, X, O);
    input clk, X;
    output O;
    wire D1, D0, Q1, Q0, Q1bar, Q0bar;
    assign DO = ??;
    Dff1 C0 (D0, clk, Q0, Q0bar);
    assign D1 = ??;
    Dff1 C1 (D1, clk, Q1, Q1bar);
    assign O = ??;
endmodule
```

(d) (10 points) Run the simulation, and show the waveform here. Please only show the signals relevant to this problem. That is, please show only the clock, X and O . Points will be taken off if this requirement is not satisfied.

