Numbers in Computers

Review

* Last lecture, we saw
— How to convert a number in binary to decimal

e Simply adding up the exponents of 2 where the binary digit
is1

— How to convert a number in decimal into a number in binary

* Keep on dividing it by 2 until the quotient is 0. Then write
down the remainders, last remainder first.

— How to do addition and subtraction in binary

This Lecture

e We will deal with

— Signed numbers
— Numbers with fractions

 Two’'s complement

— The negative of a two’s complement is given by inverting

Signed Numbers

each bit (O to 1 or 1 to 0) and then adding 1.

— If we are allowed to use only n bits, we ignore any carry

beyond n bits (take only the lower n bits).

15

14

13

12

11

10

9

8

7

6

5

4

0

0

0

1

0

0

1

1

1

0

0

1

2’s complement

* |[n any computer, if numbers are represented
in n bits, the non-negative numbers are from
0000...00 to 0111...11, the negative numbers
are from 1000...00 to 1111...11.

* The leading bit is called the 'sign bit.”
* What is the representation of 0?

Oten
1

ten

2ten

'3ten

'2ten

'1ten

9

30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15| 14 | 13 | 12 | 11 | 10

31

0|ofojo|ojofojofjojojofjofojo|0f0f0|0|0|0|0O|0O|0O|0|0|0|0|0|0|0]|0O|O

0|ofojo|ojofojojofojojoj0(0|0(0(0{0{0|0{0|0{0|0|0|0|0|0O|0O|0O]|0]|1

0|ofojo|ojofojofjofojofjofojo|0f0f0|0|0|0O|0O|0O[0O|0|0|0|0|0O|0O|0O|1]|O

O 1 I I I A A I A I A I A I A A A I A I O O R O i

O 1 I I I I A A A I A A I A A A I I A I I R R O

O 1 T I I A I A I I A I I A A A A I I A o

1{0(0(0|0|0(0|0O|O|O|O|OfO|OfO|O|O|O|O(O|O|O(O|O|O|0O|O(O|0O|0O]|0O]|O
1({0(0/0|0|0(0|0O|O|O|O|OfO|OfO|O|O(O|O|O(O|O|O|0O|O(O|0O|0O|0O|0O|0O|1

1{0(0(0|0|0(0|0O|O|O|O|OfO|OfO|O|O|O|O(O|O|O(O|O|O|0O|O(O|0O|0O|1]|O0

H A I I A A A A I A A A A A I I A I A OB
(111212212121 f2j2¢2j2j1f2j1f2j2f1y2j1f2j2f1y2}1(1240

H 1 A I A A A A I A A A A A A A I A A R

® The positive half from 0 to 2,147,483,647

e The negative half from -2,147,483,648 to -1

Question

 What is the range of numbers represented by 2’s
complement with 4 bits?

Question

What is the range of numbers represented by 2’s
complement with 4 bits?

The answer is [-8,7].

This is because all numbers with leading bit being 1 is
a negative number. So we have 8 of them. Then O is
all 0. Then seven positive numbers.

If numbers are represented in n bits, the non-
negative numbers are from 0000...00 to 0111...11,

the negative numbers are from 1000...00 to
1111...11.

Two’s Complement Representation

Type (C) Number of bits | Range (decimal)

char 8 -128 to 127

short 16 -32768 to 32767

Int 32 -2,147,483,648 to
2,147,483,647

|ong |0ng 64 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

n+1 bits (in general) |n+1 -2"to2"-1

5/14/2013

CDA3100

Subtraction with 2’s Complement

* How about 39, + (-57,.,)?

ten

Subtraction with 2’s Complement

* First, whatis (-57,,
1. 00111001 (57, in binary)
2. 11000110 (invert)
3. 11000111 (add 1)

 Second, add them.
00100111 (39,,,
11000111 (-57

) in binary in 8 bits?

in binary)
in binary)

ten

11101110 (-18,_. in binary)

ten

Converting 2’s complement to decimal

* Whatis 11101110, in decimal if it represents a
two’s complement number?

1.11101110 (original)

2.11101101 (after minus 1. Binary subtraction is just
the inverse process of addition. Borrow if you need.)

3. 00010010 (after inversion)

Two’s Complement Representation

* Sign extension

— We often need to convert a number in n bits to a
number represented with more than n bits

* From char to int for example
— This can be done by taking the most significant bit

from the shorter one and replicating it to fill the
new bits of the longer one

* Existing bits are simply copied

Sign Extension Example

3113|2222 |2|2|2|2|2|2|1|1(1]11)1|111]11]1111]9)|8|7]|6|5]4|3]12]111|0
ol9((8|)7|6|514|3|]2|110|9|8]|]7])6|5]4]13|2]11]0¢0
1{1]1]1]2]1|o|2 3,
1{1]2|2]2]|2|2]2|2]2|2|2]2|2]0]1 “3ten

-3

ten

- How about unsigned numbers?

5/14/2013 CDA3100 14

Sign Extension Example: Unsigned

31

w
[N}
N
[N}
[N}
[N}
[N}
(N}
[N}
(N}
[N}
-
-
-
-
-
-
-
-
-
-
©
©
~
o
[&]
~
w
[N}
-
o

1(1]1]2|2|2]0|0] | 252,

ololo|ololololof1|1]|al1l1]|2]0]O 252,

olz]z]]z]2l1lolo] | 2°Z%en

5/14/2013 CDA3100 15

Unsigned and Signed Numbers

* Note that bit patterns themselves do not have
inherent meaning
— We also need to know the type of the bit patterns

— For example, which of the following binary
numbers is larger?

g ojopooofofopofofojojojojojojojojojojoioyojojojojojopo (ol
Prrprfrfefrfrfrfrprqryryprprjpiyrprprprpryrprprprprprprprrf1r(to

Unsigned and Signed Numbers

* Note that bit patterns themselves do not have
inherent meaning

— We also need to know the type of the bit patterns
— For example, which one is larger?

* Unsigned numbers?
* Signed numbers?

Numbers with Fractions

* So, done with negative numbers. Done with
signed and unsigned integers.

e How about numbers with fractions?

* How to represent, say, 5.75,,, in binary forms?

Numbers with Fractions

* |[n general, to represent a real number in
binary, you first find the binary representation
of the integer part, then find the binary
representation of the fraction part, then put a
dot in between.

Numbers with fractions

 The integer partis 5,.. whichis 101, . How

did you get it?

ten two-

Numbers with Fractions

* The fraction is 0.75. Note that itis 21 + 22 =
0.5+ 0.25, so

5.75,,,=101.11

ten two

How to get the fraction

* |[n general, what you do is kind of the reverse
of getting the binary representation for the
integer: divide the fraction first by 0.5 (21),
take the quotient as the first bit of the binary
fraction, then divide the remainder by 0.25 (2
?), take the quotient as the second bit of the
binary fraction, then divide the remainder by

0.125 (273),

How to get the fraction

 Take 0.1 as an example.
—0.1/0.5=0*0.5+0.1 —> bit 1 is 0.
—0.1/0.25 = 0*0.25+0.1 —> bit 2 is O.
—0.1/0.125 =0*0.125+0.1 —> bit 3 is 0.
—0.1/0.0625 = 1*0.0625+0.0375 —> bit 4 is 1.

—0.0375/0.03125 = 1*0.03125+0.00625 —> bit 5 is
1.

* And so on, until the you have used all the bits
that hardware permits

Floating Point Numbers

 Recall scientific notation for decimal numbers

— A number is represented by a significand (or
mantissa) and an integer exponent F * 10F

 Where F is the significand, and E the exponent

— Example:
* 3.1415926 * 107
 Normalized if F is a single digit number

Floating Points in Binary

* Normalized binary scientific notation

YWy
T . XOOKXXXXX Lo X 2

— For a fixed number of bits, we need to decide
 How many bits for the significand (or fraction)
* How many bits for the exponent
* There is a trade-off between precision and range

— More bits for significand increases precision while more bits
for exponent increases the range

IEEE 754 Floating Point Standard

* Single precision
— Represented by 32 bits

31 30 23|22

S = F

1 bit 8 bits 23 bits

— Since the leading 1 bit in the significand in
normalized binary numbers is always 1, it is not
represented explicitly

Exponent

* If we represent exponents using two’s complement,
then it would not be intuitive as small numbers
appear to be larger

31130 |29 |28 |27 |26 | 25| 24|23 |22 |21 |20) 19|18 |17 |16 | 15| 14| 13 |12 | 11| 10 9 8 7 6 5 4 3 2

of1y1f11(1f2j1f2|0(0|0|0(0|0f(0O|0O(0O|O(O|O|O|O|OfO|O|O|OfO]|O

31130 | 29|28 |27 |26| 25|24 |23 |22|21|20|19 |18 |17 |16 | 15| 14|13 | 12| 11 | 10 9 8 7 6 5 4 3 2

Biased Notation

 The most negative exponent will be

represented as 00...00 and the most positive as
111...11

— That is, we need to subtract the bias from the
corresponding unassigned value

— The value of an IEEE 754 single precision is

(-1)° x (1 + O.Fraction) x 2'°%"" 0

31 (30 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19

18|17 |16 |15 | 14 | 13 |12 | 11 | 10 9 8

S exponent fraction

1 bit 8 bits 23 bits

Example

101.11,, =2%2+2°+21+22=5,75

The normalized binary number will be
1.0111x22=1.0111x2(125-127)

So the exponentis 129, = 10000001

two ten

ten

1130 | 29|28 |27 |26 | 25|24 |23 |22 |21 20|19 |18 |17 |16 | 15| 14|13 | 12| 11 | 10 9 8 7 6 5 4

110(0{0(0f0|0|2|0(f1|2|1|0(0f(0|0(0O|0O(O|O(O|O|0OfO|0O|0O|0O|O

As a hexadecimal number, the representation is
0x40B80000

|EEE 754 Double Precision

* |t uses 64 bits (two 32-bit words)
— 1 bit for the sign
— 11 bits for the exponent
— 52 bits for the fraction
— 1023 as the bias

31 30129 |28 | 27 | 26 | 25| 24 | 23 | 22| 21 | 20| 19 (18 |17 |16 | 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6

S Exponent fraction

1 bit 11 bits 20 bits

Fraction (continued)

32 bits

101.11

So the exponent is 1025

Example (Double Precision)

two

=22+420+214+22=575
The normalized binary number will be

1.0111x22=1.0111x2(1025-1023)

ten

= 10000000001

two

1130

29

28 | 27

26

25 | 24

23122 | 21

20

19

18 | 17

16

15 | 14

1312] 11

10

9

8 7

6

5 4

3 2 1

1

0

0

0

0

0

1

0

1

1

0

0

0

0

0

0

0

0(0

11 30

29

28 | 27

26

25 | 24

23122 |21

20

19

18 | 17

16

15 | 14

1312] 11

10

9

8 7

6

5 4

3 2 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0(0

As a hexadecimal number, the representation is
0x4017 0000 0000 0000

Special Cases

Single precision

Double precision

Object represented

Exponent Fraction Exponent Fraction
0 0 0 0 0
0 nonzero 0 nonzero +denormalized number
1-254 anything 1-2046 anything +floating-point number
255 0 2047 0 + infinity
255 nonzero 2047 nonzero NaN (Not a number)

5/14/2013

CDA3100

32

Floating Point Numbers

How many different numbers can the single
orecision format represent? What is the
argest number it can represent?

Ranges for IEEE 754 Single Precision

e Largest positive number

30| 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20| 19| 18 |17 |16 | 15| 14|13 |12 | 11|10]| 9 8 7 6 5 4 3 2 1

H 1 O A A A A I A

* Smallest positive number (floating point)

30129 | 28 | 27 | 26 | 25| 24 |23 | 22|21 |20 19|18 |17 |16 |15 14|13 (12|11]|10| 9 7 6 5 4 3 2 1

ofojofo|ojojoj1jo0|0fojo0|0j0|0f0|0(0O|0(0O|O|0O|O|0Of(O|0O(O|O(0O]|O0

Ranges for IEEE 754 Single Precision

* Largest positive number

23 (254 -127) 128 104

1+1-2 ")x2 =2 -2 = 3402823466 3852885981 1704183484 516925440

~ 34028235 x 10 °

* Smallest positive number (floating point)

(1-127) -126 -38

(1+0.0)x 2 =2 ~1.175494351 x 10

Ranges for IEEE 754 Double Precision

e Largest positive number

(L+1-2 P yx 2078 _ ol 5% 1.7976931348 623157 x 10

* Smallest positive number (Floating-point
number)

w 2B _ o719 2250738585 x 10

Comments on Overflow and Underflow

* Overflow (and underflow also for floating
numbers) happens when a number is outside
the range of a particular representation
— For example, by using 8-bit two’s complement

representation, we can only represent a number
between -128 and 127

* If a number is smaller than -128, it will cause overflow

* If a number is larger than 127, it will cause overflow also

— Note that arithmetic operations can result in
overflow

