
Numbers in Computers 



Review 

• Last lecture, we saw 

– How to convert a number in binary to decimal 

• Simply adding up the exponents of 2 where the binary digit 
is 1 

– How to convert a number in decimal into a number in binary 

• Keep on dividing it by 2 until the quotient is 0. Then write 
down the remainders,  last remainder first. 

– How to do addition and subtraction in binary 



This Lecture 

• We will deal with  

– Signed numbers 

– Numbers with fractions 
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Signed Numbers 
• Two’s complement 

– The negative of a two’s complement is given by inverting 
each bit (0 to 1 or 1 to 0) and then adding 1. 

– If we are allowed to use only n bits, we ignore any carry 
beyond n bits (take only the lower n bits). 

 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 1 0 0 1 1 1 0 0 1 1 1 1 1 

1 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 



2’s complement 

• In any computer, if numbers are represented 
in n bits, the non-negative numbers are from 
0000…00 to 0111…11, the negative numbers 
are from 1000…00 to 1111…11. 

• The leading bit is called the ``sign bit.’’ 

• What is the representation of 0? 



31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

 

0ten 

1ten 

2ten 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

… … 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

…                   … 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 -3ten 

-2ten 

-1ten 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

• The positive half from 0 to 2,147,483,647 

• The negative half from -2,147,483,648 to -1 



Question 

• What is the range of numbers represented by 2’s 
complement with 4 bits? 

 

 



Question 

• What is the range of numbers represented by 2’s 
complement with 4 bits? 

• The answer is [-8,7]. 

• This is because all numbers with leading bit being 1 is 
a negative number. So we have 8 of them. Then 0 is 
all 0. Then seven positive numbers. 

• If numbers are represented in n bits, the non-
negative numbers are from 0000…00 to 0111…11, 
the negative numbers are from 1000…00 to 
1111…11. 
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Two’s Complement Representation 

Type (C) Number of bits Range (decimal) 

char 8 -128 to 127 

short 16 -32768 to 32767 

int 32 -2,147,483,648 to 

2,147,483,647 

long long 64 -9,223,372,036,854,775,808 to 

9,223,372,036,854,775,807 

n+1 bits (in general) n+1 -2n to 2n - 1 



Subtraction with 2’s Complement 

• How about 39ten + (-57ten)? 

 

 

 



Subtraction with 2’s Complement 

• First, what is (-57ten) in binary in 8 bits? 

1. 00111001 (57ten in binary) 

2. 11000110 (invert) 

3. 11000111 (add 1) 

• Second, add them. 

00100111 (39ten in binary) 

11000111 (-57ten in binary) 

11101110 (-18ten in binary) 



Converting 2’s complement to decimal 

• What is 11101110ten in decimal if it represents a 
two’s complement number? 

1. 11101110 (original) 

2. 11101101 (after minus 1. Binary subtraction is just 
the inverse process of addition. Borrow if you need.) 

3. 00010010 (after inversion) 
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Two’s Complement Representation 

• Sign extension 

– We often need to convert a number in n bits to a 
number represented with more than n bits 

• From char to int for example 

– This can be done by taking the most significant bit 
from the shorter one and replicating it to fill the 
new bits of the longer one 

• Existing bits are simply copied 
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Sign Extension Example 
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-3ten 

-3ten 

-3ten 

1 1 1 1 1 1 0 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

- How about unsigned numbers?  
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Sign Extension Example: Unsigned 
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252ten 

252ten 

252ten 

1 1 1 1 1 1 0 0 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 
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Unsigned and Signed Numbers 

• Note that bit patterns themselves do not have 
inherent meaning 

– We also need to know the type of the bit patterns 

– For example, which of the following binary 
numbers is larger? 
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Unsigned and Signed Numbers 

• Note that bit patterns themselves do not have 
inherent meaning 

– We also need to know the type of the bit patterns 

– For example, which one is larger? 

 

 

 

• Unsigned numbers? 

• Signed numbers? 



Numbers with Fractions 

• So, done with negative numbers. Done with 
signed and unsigned integers. 

• How about numbers with fractions? 

• How to represent, say, 5.75ten in binary forms? 



Numbers with Fractions 

• In general, to represent a real number in 
binary, you first find the binary representation  
of the integer part, then find the binary 
representation  of the fraction part, then put a 
dot in between. 



Numbers with fractions 

• The integer part is 5ten which is 101two. How 
did you get it? 

 



Numbers with Fractions 

• The fraction is 0.75. Note that it is 2-1 + 2-2 = 
0.5 + 0.25, so  

        5.75ten = 101.11two 



How to get the fraction  

• In general, what you do is kind of the reverse 
of getting the binary representation for the 
integer: divide the fraction first by 0.5 (2-1), 
take the quotient as the first bit of the binary 
fraction, then divide the remainder by 0.25 (2-

2), take the quotient as the second bit of the 
binary fraction, then divide the remainder by 
0.125 (2-3), 



How to get the fraction 

• Take 0.1 as an example.  
– 0.1/0.5=0*0.5+0.1 –> bit 1 is 0. 

– 0.1/0.25 = 0*0.25+0.1 –> bit 2 is 0. 

– 0.1/0.125 = 0*0.125+0.1 –> bit 3 is 0. 

– 0.1/0.0625 = 1*0.0625+0.0375 –> bit 4 is 1. 

– 0.0375/0.03125 = 1*0.03125+0.00625 –> bit 5 is 
1. 

• And so on, until the you have used all the bits 
that hardware permits 

 

 



5/14/2013 CDA3100 24 

Floating Point Numbers 

• Recall scientific notation for decimal numbers 

– A number is represented by a significand (or 
mantissa) and an integer exponent F * 10E 

• Where F is the significand, and E the exponent 

– Example: 

• 3.1415926 * 102  

• Normalized if F is a single digit number 
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Floating Points in Binary 

• Normalized binary scientific notation 

 
 

– For a fixed number of bits, we need to decide 

• How many bits for the significand (or fraction) 

• How many bits for the exponent 

• There is a trade-off between precision and range 
– More bits for significand increases precision while more bits 

for exponent increases the range 

yyyy

two
xxxxxxxxxx 2.1 
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IEEE 754 Floating Point Standard 

• Single precision 

– Represented by 32 bits 

 

 

 

– Since the leading 1 bit in the significand in 
normalized binary numbers is always 1, it is not 
represented explicitly 
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Exponent 

• If we represent exponents using two’s complement, 
then it would not be intuitive as small numbers 
appear to be larger 

 

 

 

 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Biased Notation 

• The most negative exponent will be 
represented as 00…00 and the most positive as 
111…11 

– That is, we need to subtract the bias from the 
corresponding unassigned value 

– The value of an IEEE 754 single precision is 

 
)127Exponent(

2)Fraction.01()1(



S

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

s exponent fraction 

1 bit 8 bits 23 bits 
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Example 

 101.11two= 22 + 20 + 2-1 + 2-2 = 5.75ten 

  The normalized binary number will be 
1.011122 = 1.01112(129-127) 

   So the exponent is 129ten = 10000001 

 

 

As a hexadecimal number, the representation is  

 0x40B80000  

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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IEEE 754 Double Precision 

• It uses 64 bits (two 32-bit words) 

– 1 bit for the sign 

– 11 bits for the exponent 

– 52 bits for the fraction 

– 1023 as the bias 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

s Exponent fraction 

1 bit 11 bits 20 bits 

Fraction (continued) 

32 bits 
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Example (Double Precision) 

 101.11two= 22 + 20 + 2-1 + 2-2 = 5.75 
  The normalized binary number will be 

1.011122 = 1.01112(1025-1023) 

   So the exponent is 1025ten = 10000000001two 
 

 
 
As a hexadecimal number, the representation is  
 0x4017 0000 0000 0000 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Special Cases 

Single precision Double precision Object represented 

Exponent Fraction Exponent Fraction 

0 0 0 0 0 

0 nonzero 0 nonzero denormalized number 

1-254 anything 1-2046 anything floating-point number 

255 0 2047 0  infinity 

255 nonzero 2047 nonzero NaN (Not a number) 



Floating Point Numbers 

• How many different numbers can the single 
precision format represent? What is the 
largest number it can represent? 
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Ranges for IEEE 754 Single Precision 

• Largest positive number 

 

 
 

• Smallest positive number (floating point) 

 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Ranges for IEEE 754 Single Precision 
• Largest positive number 

 

• Smallest positive number (floating point) 

 

38

104128)127254(23

103.4028235

516925440170418348438528859813402823466222)211(






38126)1271(
10175494351.122)0.01(



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Ranges for IEEE 754 Double Precision 

• Largest positive number 

 
• Smallest positive number (Floating-point 

number) 

 

 

3081022)10231(
102250738585.222)0.01(




3089711024)10232046(52
106231577976931348.1222)211( 


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Comments on Overflow and Underflow 
• Overflow (and underflow also for floating 

numbers) happens when a number is outside 
the range of a particular representation 

– For example, by using 8-bit two’s complement 
representation, we can only represent a number 
between -128 and 127 

• If a number is smaller than -128, it will cause overflow 

• If a number is larger than 127, it will cause overflow also 

– Note that arithmetic operations can result in 
overflow 


