MIPS assembly

Computer Model

What’s in a computer?
Processor
Memory

/O devices (keyboard, mouse, LCD, video
camera, speaker, disk, CD drive, ...)

Computer Model

Processor

data

instruction

/O
device

Registers and ALU

* A processor has registers and ALU

— Registers are where you store values (e.g., the
value of a variable)

— The values stored in registers are sent to the ALU
to be added, subtracted, anded, ored, xored, ...,
then the result is stored back in a register.
Basically it is the heart of the processor and does
the calculation.

Memory

* Memory is modeled as a continuous space
from O to Oxffff...ffff.

* Every byte in the memory is associated with
an index, called address.

e \WWe can read and write:

— Given the address to the memory hardware, we
can read the content in that byte.

— Given the address and a byte value, we can
modify the content in the memory at that addres.

Program and Data

* Programs consist of instructions and data,
both stored in the memory

* |nstructions are also represented as 0’s and 1’s

* A program is executed instruction by
instruction

High-level
language
program
(in G}

Assembly
language
program
(for MIPS)

Binary machine
language
program

(for MIPS)

swap(int v[], int k)
{int temp;
temp = v[k];
vik] = vk+1];
vik+1] = temp;

by

Compiler

swap:

muli $2, $5,4
add $2, $4,$2
w $15, 0($2)
w $18, 4($2)
sw $16, 0($2)
sw $15, 4($2)
r $31

'

Assembler

v

00000000101000010000000000011000
000000000001 10000001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

GoogleEarth.exe

00905ha4dd
000000b3
Q0000000
Q0000000
OebalfOe
70207369
6h622074
6hb46Tbd
bc160841
ef/72/6ba
efbd44adf
ef 796905
ef/734a03
68636952
Q0000000
424219de
000b010b

Q0000003
Q0000000
Q0000000
Q0000000
cd09b400
72676172
be/5/7220
0aldid2e
et 786905
et 786902
et 766906
et 7869be
et 78690a
et 786905
Q0000000
Q0000000
00010a00

00000004
00000040
Q0000000
Q0000000
4c01h821
63206d61
206eb920
00000024
ef 786905
ef /767586
efbhd4b3b
efbld4aff
ef /ebfc?
Q0000000
00004550
Q0000000
0000be(0

QO0O0FF{f
00000000
00000000
000000e8
685421cd
6tbebebl
20534144
00000000
et 786905
et 78690b
et 78690/
et 786914
et 786904
00000000
0004014c
010100e0
00000000

5/16/2013

2akbb
00bc
0007
L£4f0
T266
206f
6465
2061
e76f
520a
TJ020
206f
0000

o008
fbic
10cd
7265
edef
efec
OdZe
efel
6l72
6d&S
6372
6372
o000

0000
befc
fZeb
6365
o220
67 be
500a
Taet
206d
TJeot
7373
efez
0000

Linux Kernel

07c0
0031
c031
2074
6fec
T265
e3bc
ec20
eeb S
2065
6120
T46f
0000

cB8c
20ac
lcecd
ef62
T070
7320
7361
elef
7473
6964
T96e
2220
0000

dB88e
T4c0
1%cd
T46f
2075
T075
2063
264
6les
6b73
620
2e2l
0000

CDA3100

cD8e
b40%5
flea
Eeb9
7365
ef70
7375
2072
2ebd
6120
T965
2220
0000

d08e
bble
O0ff
2067
el
7472
2063
7270
Dald
646e
7420
Oald
0000

Why are we learning assembly

 Comparing to higher level languages such as C,
assembly languages

e are more difficult to write, read, and debug.

* have poor portability — Every processor has its
own assembly language. The code you wrote
for MIPS is NOT going to run on Intel processors.

e Then why are we learning it?

* After learning the first assembly language, the
second will be MUCH easier

* It brings us closer to the processor, which is the
goal of this course.

MIPS ISA

* There are many different Instruction Set Architectures
designed for different applications with different
performance/cost tradeoff

— Including Intel-32, PowerPC, MIPS, ARM

e We focus on MIPS architecture

— Microprocessor without Interlocked Pipeline Stages

— A RISC (reduced instruction set computer) architecture
* In contrast to CISC (complex instruction set computer)

— Similar to other architectures developed since the 1980's
— Almost 100 million MIPS processors manufactured in 2002
— Used by NEC, Nintendo, Cisco, Silicon Graphics, Sony, ...

A peek into the future...

5/16/2013

—

iy

Instruction [31-26]

Instruction [25-21)

Control |

| 'Add resul
L/ shin

RegDst \oft 2
| Branch
L MemBesd

AU

MemtoReg
ALUOp
| MemWrile
ALUSre
RegWrite
1
Read

Instruction [20-16)

| register 1 Read » \\

4 ji

Instrucsion [15-11)

— -‘s-:-o'

Instruction [15-0f

| Wrie -

register 2 om0
Aeac
w""’m data 2

daia Registers

Head

p-=~ Adcress cals

Dain

| Write
memo
data i

—d SN | < / _J
extend ALU !

Instruction [5-0)

OxcE)

CDA3100

12

Abstract View of MIPS Implementation

e BN
A
- PC 6= Adaress Instruction {nwm:mm >ALU Address
RAegistor # Data
memory $= Agister # T— oy
! Data

5/16/2013 CDA3100

MIPS Instruction Set

e Aninstructionis a command that hardware
understands

— Instruction set is the vocabulary of commands
understood by a given computer

— It includes arithmetic instructions, memory
access instructions, logical operations,
instructions for making decisions

Arithmetic Instructions

 Each MIPS arithmetic instruction performs
only one operation
— Each one must always have exactly three variables
add a, b, c ¥ a=>b + c
* Note that these variables can be the same though

— If we have a more complex statement, we have to
break it into pieces

Arithmetic Instructions

 Example
— f=(g+h)—(i+])

Arithmetic Instructions

 Example
— f=(g+h)—(i+])

add t0, g, h # temporary variable t0 contains g + h

add tl, i,] # temporary variable tl contains i +]
sub £, t0, tl # £ gets t0 - tl

Operands of Computer Hardware

* |[n C, we can define as many as variables as we
heed

— In MIPS, operands for arithmetic operations must
be from registers

— MIPS has thirty-two 32-bit registers

MIPS Registers

Register | Mnemonic Conventional Use Register | Mnemonic Conventional Use
Number Name Number Name
$0 $zero Permanently 0 F24, 325 | B8, $t9 Temporary
1 Fat Assembler Temporary (reserved) $26, 327 | RO, k1 ggnel (reserved for
$2, 33 T, Tl Walue returned by asubroutine $23 Fep (3lobal Pointer
$4-37 || Fad-Fa? | Arguments to asubroutine $29 Fap Stack Pointer
Tetnporary
F2-F15 | BtO-Ft7 (not preserved across a function $30 tip Frame Fointer
call)
T16-$23 || $a0-Ga7 | ved reglsters 331 Ira Return Address

(preserved across a function call)

5/16/2013

CDA3100

19

Arithmetic Instructions

 Example
— f=(g+h)—(i+])

#In MIPS, add can not access variables directly
#tbecause they are in memory
H Suppose f, g, h, i, and j are in $s0, $s1, $s2, $s3, $s4 respectively
add St0, Ss1, Ss2 #temporary variable tO contains g + h
add St1, Ss3, Ss4 # temporary variable t1 contains i + j
sub SsO, StO, St1 # f gets t0 —t1

Memory Operands

* Since variables (they are data) are initially in
memory, we need to have data transfer instructions

— Note a program (including data (variables)) is loaded from
memory

— We also need to save the results to memory

— Also when we need more variables than the number of
registers we have, we need to use memory to save the
registers that are not used at the moment

e Data transfer instructions
— lw (load word) from memory to a register
— sw (store word) from register to memory

Using Load and Store

* Memory address in load and store instructions
is specified by a base register and offset

op = | | Fo Memory
|

1 i
Regiter @—' [Byte] Halfword Word
I 1

— This is called base addressing

Using Load and Store

* How to implement the ::T Higher
following statement using the Ejg';zg
MIPS assembly we have so far? '

— Assuming the address of Ais in
Ss3 and the variable his in Ss2 A[2] — 32bits of data
A[12] = h + A[8] Alf] —f simasn |
A[O] | 32bitsofdata | Aqdregg

1w $t0,. 32(%s3) #Temporary reg $t0 gets ALS]
add $t0. $s2, $t0 #lTemporary reg $t0 gets h + AL3]

S $t0. 48(%$s3)

Specifying Memory Address

e Memory is organized as an array of bytes (8 bits)

3 100

2 10
1 101
0 1

Addrass Dala

Processor Memory

|

5/16/2013 CDA3100 24

Specifying Memory Address
 MIPS uses words (4 bytes)

— Each word must start at address that are multiples of 4
— This is called alignment restriction
— Big Endian

100

1 101

1
Addrass Dala

Processor Memory

5/16/2013 CDA3100

Example of Endianness
e Store 0x87654321 at address 0x0000, byte-addressable

0x0003 —

0x0002—

0x0001 —

0x0000—

5/16/2013

Higher
Memory
Address

@ o @ @ 200

@

0x0003 —

0x0002—

0x0001 —
Lower

Memory gy0000—»
Address

BIG ENDIAN

CDA3100

Higher
Memory
Address

@ o @ @ 200

@

Lower

Memory
Address

LITTLE ENDIAN

26

Example of Endianness
e Store 0x87654321 at address 0x0000, byte-addressable

0x0003 —

0x0002 —

0x0001 —

0x0000—

5/16/2013

@ @ @ o o0

@

0x21

0x43

Ox65

0x87

BIG ENDIAN

Higher
Memory
Address

Lower
Memory
Address

0x0003 —

0x0002—

0x0001 —

0x0000—

CDA3100

@ @ @ o 200

@

0x87

0x65

0x43

Ox21

LITTLE ENDIAN

Higher
Memory
Address

Lower
Memory
Address

27

MIPS Assembly Programs

 Consists of MIPS instructions and data

— Instructions are given in .text segments
* A MIPS program can have multiple .text segments
— Data are defined in .data segments using MIPS
assembly directives

» .word, for example, defines the following numbers in
successive memory words

— See Appendix A A.10 (pp. A-45 — A-48) for details

Exercise 1

e Suppose we have an array with starting
address stored in $sO. We want to add the
content of the first three elements, and put
the result in the fourth element?

— A[3] = A[2] + A[1] + A[O]

