
MIPS assembly

Computer Model

• What’s in a computer?

• Processor

• Memory

• I/O devices (keyboard, mouse, LCD, video
camera, speaker, disk, CD drive, …)

Computer Model

Processor

Memory

I/O
device

data

instruction

register ALU

0011100..111

0011100..111

0011100..111

00111111..111

00111011..111

Registers and ALU

• A processor has registers and ALU

– Registers are where you store values (e.g., the
value of a variable)

– The values stored in registers are sent to the ALU
to be added, subtracted, anded, ored, xored, …,
then the result is stored back in a register.
Basically it is the heart of the processor and does
the calculation.

Memory

• Memory is modeled as a continuous space
from 0 to 0xffff…ffff.

• Every byte in the memory is associated with
an index, called address.

• We can read and write:

– Given the address to the memory hardware, we
can read the content in that byte.

– Given the address and a byte value, we can
modify the content in the memory at that addres.

5/16/2013 CDA3100 6

Program and Data
• Programs consist of instructions and data,

both stored in the memory

• Instructions are also represented as 0’s and 1’s

• A program is executed instruction by
instruction

5/16/2013 CDA3100 8

GoogleEarth.exe

5/16/2013 CDA3100 9

Linux Kernel

Why are we learning assembly

• Comparing to higher level languages such as C,
assembly languages

• are more difficult to write, read, and debug.

• have poor portability – Every processor has its
own assembly language. The code you wrote
for MIPS is NOT going to run on Intel processors.

• Then why are we learning it?

• After learning the first assembly language, the
second will be MUCH easier

• It brings us closer to the processor, which is the
goal of this course.

5/16/2013 CDA3100 11

MIPS ISA
• There are many different Instruction Set Architectures

designed for different applications with different
performance/cost tradeoff
– Including Intel-32, PowerPC, MIPS, ARM ….

• We focus on MIPS architecture
– Microprocessor without Interlocked Pipeline Stages

– A RISC (reduced instruction set computer) architecture
• In contrast to CISC (complex instruction set computer)

– Similar to other architectures developed since the 1980's

– Almost 100 million MIPS processors manufactured in 2002

– Used by NEC, Nintendo, Cisco, Silicon Graphics, Sony, …

5/16/2013 CDA3100 12

A peek into the future…

5/16/2013 CDA3100 13

Abstract View of MIPS Implementation

5/16/2013 CDA3100 14

MIPS Instruction Set
• An instruction is a command that hardware

understands

– Instruction set is the vocabulary of commands
understood by a given computer

– It includes arithmetic instructions, memory
access instructions, logical operations,
instructions for making decisions

5/16/2013 CDA3100 15

Arithmetic Instructions

• Each MIPS arithmetic instruction performs
only one operation

– Each one must always have exactly three variables

 add a, b, c # a = b + c

• Note that these variables can be the same though

– If we have a more complex statement, we have to
break it into pieces

5/16/2013 CDA3100 16

Arithmetic Instructions

• Example

– f = (g + h) – (i + j)

5/16/2013 CDA3100 17

Arithmetic Instructions

• Example

– f = (g + h) – (i + j)

 add t0, g, h # temporary variable t0 contains g + h
 add t1, i, j # temporary variable t1 contains i + j

 sub f, t0, t1 # f gets t0 – t1

5/16/2013 CDA3100 18

Operands of Computer Hardware

• In C, we can define as many as variables as we
need

– In MIPS, operands for arithmetic operations must
be from registers

– MIPS has thirty-two 32-bit registers

5/16/2013 CDA3100 19

MIPS Registers

5/16/2013 CDA3100 20

Arithmetic Instructions

• Example

– f = (g + h) – (i + j)

 #In MIPS, add can not access variables directly

 #because they are in memory

 # Suppose f, g, h, i, and j are in $s0, $s1, $s2, $s3, $s4 respectively

 add $t0, $s1, $s2 # temporary variable t0 contains g + h

 add $t1, $s3, $s4 # temporary variable t1 contains i + j

 sub $s0, $t0, $t1 # f gets t0 – t1

5/16/2013 CDA3100 21

Memory Operands
• Since variables (they are data) are initially in

memory, we need to have data transfer instructions
– Note a program (including data (variables)) is loaded from

memory

– We also need to save the results to memory

– Also when we need more variables than the number of
registers we have, we need to use memory to save the
registers that are not used at the moment

• Data transfer instructions
– lw (load word) from memory to a register

– sw (store word) from register to memory

5/16/2013 CDA3100 22

Using Load and Store

• Memory address in load and store instructions
is specified by a base register and offset

– This is called base addressing

5/16/2013 CDA3100 23

Using Load and Store
• How to implement the

following statement using the
MIPS assembly we have so far?

– Assuming the address of A is in
$s3 and the variable h is in $s2

 A[12] = h + A[8]

5/16/2013 CDA3100 24

Specifying Memory Address
• Memory is organized as an array of bytes (8 bits)

5/16/2013 CDA3100 25

Specifying Memory Address
• MIPS uses words (4 bytes)

– Each word must start at address that are multiples of 4

– This is called alignment restriction

– Big Endian

5/16/2013 CDA3100 26

Example of Endianness
• Store 0x87654321 at address 0x0000, byte-addressable

5/16/2013 CDA3100 27

Example of Endianness
• Store 0x87654321 at address 0x0000, byte-addressable

5/16/2013 CDA3100 28

MIPS Assembly Programs

• Consists of MIPS instructions and data

– Instructions are given in .text segments

• A MIPS program can have multiple .text segments

– Data are defined in .data segments using MIPS
assembly directives

• .word, for example, defines the following numbers in
successive memory words

– See Appendix A A.10 (pp. A-45 – A-48) for details

Exercise 1

• Suppose we have an array with starting
address stored in $s0. We want to add the
content of the first three elements, and put
the result in the fourth element?

– A[3] = A[2] + A[1] + A[0]

