MIPS Processor



In Class Exercise Question

* Design a 2-bit up-down counter with a control
signal U and a control signal R. If U=0, count
down, else count up. If R=1, reset counter to
0, else count as appropriate. You don’t have to
worry about output, as the value of each bit of
output is the same as the value of the counter.



In Class Exercise Answer

This counter requires 4 states
SO

— Counter is at 00, named 00

S1

— Counter is at 01, named 01

S2
— Counter is at 10, named 10

S3
— Counteris at 11, named 11



In Class Exercise Answer

U=0, R=0
U=X, R=1
' =1, R=0 U=1, R=0 U=1, R=0
U=0, R=0 U=0, R=0 U=0, R=0

U=1, R=0



1

0 (X)

0

1

1 (X)

0

1

0 (X)

1

1

1 (X)

1

1

0 (X)

0

1

1 (X)

0

1

0 (X)

1

1

1 (X)

1



In Class Exercise Answer

+ DO =

Q1Q0
lk 00 01 11 10
oo | I N F O
01
11
10 1 1

=~R &~Q0



In Class Exercise Answer

* D1=

Q1Q0
tk 00 01 11 10
oo | I F O
01
11
10 1 1

=(*"Q1&~Q0& ~“U&~R) | ("Q1 & Q1 & U & ~R) |
(Q1& Q0 & ~U &~R) | (Q1 & ~Q0 & U & ~R)




The Register File

* In MIPS, there are 32 Registers.

* Inany given instruction, we will need to
read up to two registers, and write to up to
one register.

* Think registers as D flip-flops. Each register
has 32 Dffs (one for each bit).

 The data signals are:

readRegl, readReg2: 5 bits. Used to specify
which register to read.

writeReg: 5-bits. Used to specify which register to
write.

writeData: 32-bits. The value that should be
written into the writeRegister.

readDatal, readData2: 32-bits. The value that will
be read out of readRegister1 and readRegister2

* The control signals are:

RegWrite: whether to write or not.

Regster
numbers |

5  Read
" register

S ' Read
regster
S wirte
—*’
regster

Data { — Write

1

2

a Regsters



e This is for read.

Read register
number 1

Read register
number 2

Register 0

Register 1

Registern — 2

Register n — 1

_.

Y

] -

Y

Y

Y

 J

] -

k J

Y

Y

Read data 1

Read data 2



To write to a register

 The datais connected to every register.

 Use RegWrite, generate a LOAD” signal for
the register you want to write to.

» Every register has a LOAD signal. If that
signal is '1’, new data will be set.

» Only the target register’s LOAD signal is
1.



RAM

Length : 133.35 +/- 0.15 (Same as 168pin SDRAM DIMM)

Unit - mm

!
L

g
newun

o |

LOCTL
!
ELE =

RTTINEE Y
e
1y

tieninh

) wielé
wlhie vt
ahn!

Lt S RS S
RIE SSDTIEE S S ] 4

UL LU

. .
BIRPHI N
-

“q»
I BUILLE Vil
BRPRNI i T

ity
Skl
A"i‘.hh (F N

4~

4

o |
r
2
=

4
_'51
A

>y
(A {Ta

1L WAL L

'y
\4 ~~
L e |

&

~th;




A RAM Example

RAM. Data signals:

RAM. Control signals:

address: 21-bits. If write, which 21
! Address +»
location to write to. If read, which

location to read from.

Din: 16-bits. The data that should Chip select ——
be written into the location

o Qutput enable ————»
specified by the address.

Dout: 16-bits. The data that is Write enable '
read out of the location specified
by the address Din[15-0] 16;

SRAM
2M x 16

16
f=—= Dout[15-0]

Chip select: whether to use this
chip or not.

Output enable: whether to
enable output (output some
voltage or in high-impedence
state)

Write enable: whether to read or
write.

11/8/2007 10:04:17 AM week11-5.ppt

12



The processor

 We now know all the parts in the processor.
— ALU
— PC
— Register file
Also
— RAM

* How to put them together? How to make
them execute an instruction as we need?



0000 AND
0001 OR
0010 add
3 —» 0110 subtract
0111 set on less than
— /ero 1100 NOR
> ALU > Resu” AinrertBinvert Carryl?per‘ation
— Overflow | ; N %\
1 |
b —» T\: 1
Y = Result
b | ﬂ —
. + 2
1
CarryOut
Less =L3)

CarryOut



Basic MIPS Implementation

* We will focus on design of a basic MIPS
processor that includes a subset of the core
MIPS instruction set
— The arithmetic-logic instructions:

e add, sub, and, or, and slt

— The memory-reference instructions:
* load word and store word

— The branching instructions:

* branch equal and jump



0 rs rt rd 0 0Ox20

add rd, rs, rt
6 5 5 5 5 6

Put the sum of registers rs and rt into register rd.

0 rs rt rd 0 Ox22

sub rd, rs, rt
6 5 5 5 5 6

I PR = r rd 0 0x24
6 : . 5 6

0 rs rt rd 0 Ox25

or rd, rs, rt
6 5 5 5 5 6

s1t rd. rs. rt 0 rs rt rd 0 Ox2a
5 6

6 5 5 5 N
Set register rd to 1 if register rs is less than rt, and to 0 otherwise.

0x23 rs rt Offset

Iw rt, address
6 5 5 16

Load the 32-bit quantity (word) at address into register rt.

Ox2b rs rt Offset
6 5 5 16

sw rt, address

4 rs rt Offset

beq rs, rt, label
6 5 5 16
Conditionally branch the number of instructions specified by the offset if

register rs equals rt.

2 target

J target
6 26

Unconditionally jump to the instruction at target.



The execution of an instruction

First, we need to fetch the instruction at the address given by
the current PC from instruction memory

Second, we need to decode the instruction

Third, we grab the values from the register file

Fourth, we need to perform ALU operations on the values
Fifth, the output from the ALU goes to back to the register file
and/or data memory

Sixth, based on the instruction, we need to update the PCin
one of two ways

— For sequential instructions, we then go the next instruction by setting
PC=PC+4.

— For jump and branch instructions, PC will be changed based off the
value from the ALU



MIPS Implementation Overview

* For every instruction, the first three steps are
identical

— Fetch the instruction from the memory according to the
value of the program counter

— Parse the fields of the instructions using the encodings
— Read one or two registers

* For load word, we need to read only one register

* Most other instructions (except jump) require we read two
registers

— After the two steps, the actions required depend on the
instructions

 However, the actions are similar



Instruction Fetch and PC Increment

e Since for every instruction, the first step is to fetch
the instruction from memory

— In addition, for most instructions, the next instruction will
beatPC+4

o ™S

11/18/2007 7:39:38 PM




R-type Instructions
* Also called arithmetic-logical instructions

— Including add, sub, and, or, and slt

— Each one reads from two registers, performs an
arithmetic or logical operation on the registers,
and then write the result to a register



R-type Instructions

* Suppose the instructionis add $t0, $t1l,
St 2, what are the read regl, read reg2, and write

reg? What is the value of RegWrite? How to control
the ALU to do add? (St0 == S8)

: S  Read _J ALL ooeratiar
—T.. mmf 1 N\ - "--3..-
Regsier | 5 _ Read Cata 1 i
numbers registar 2 F— \, at 4‘—“’ "
5 Reqisters . ALU
Sy ViriE / result |
( data2 = | Y B
Data < ——e Write ’
Data

a Regsters b, ALU



Read
"| address

Instruction

[31-0] |

Instruction
MEIMW

Datapath only for R-type instructions

Read

register 1 Read |
i Read data 1

register 2

. Fead

.| Write L

register data 2
| Write

data  Registers




Datapath only for R-type instructions

Wrie

4 —0-/
Instrucsion [25:21) Read
Read
PC +4-+ aadress 'S  Read B
Instrucsion [20'16] Read data 1
— Instruction register 2
[31:0) _— Read >N-U ALU
Instruction Inssruchon l‘5.1‘l * wm, data 2 'T_&
memory ¢ L -




Data Transfer Instructions

* Load word and store word instructions have
the following general form
— 1w Srt, offset value($rs)
e opcode (6 bits) rs (5 bits) rt (5 bits) offset (16 bits)
—sw Srt, offset value($Srs)
e opcode (6 bits) rs (5 bits) rt (5 bits) offset (16 bits)
— They need to compute a memory address by

adding the base register to the sign-extended 16-
bit offset



Load

 Forinstruction 1load $t0, 16 (Stl),
what should the control signal be?

[ 5 | Read
—=* register 1 Read
Reg=er 5  Read data 1
numbers Yo registar 2
5 | write Registers
( data 2
i Data
FegWhile

a Regsters

2 * ALL coeration

-__L'.-
< ---

\ P -
> Data )ALU ALU|
reau[t_

—_—— =t
d-” <

s >

b, ALU



Read
"| address

Instruction

[31-0] [

Instruction
I'I'IEI'I'IGI'f

Data path

Read
register 1 Read

Read data 1 i

register 2

. Read
Write .
register  data2
Write

data  Registers

%
:




Data path only for lw (answer)

Instrucsion [25:21) Resd
Instrucsion [2016) data i
Instruction f
131:0) '} >Aw ALU Adcress Fead
Wrae resut cata
Instruction
registe’ - -
o Wrie /
data  Registers Data
; memory
Instrucsion [15:0) 16 'Q ko y
o




Data path only for sw (answer)

Instrucsion [25:21) Read
register 1 o ad
Instrucsion [20°16) Resd data 1
register 2
Reao
data 2
Rogisters
Instrucsion [15:0) 16 ,'Q'
| extend




Branch Instruction

* Beq has three operands, two registers that are
compared for equality and a 16-bit offset used
to compute the branch-target address

—beg Srs, Srt, offset
e opcode (6 bits) rs (5 bits) rt (5 bits) offset (16 bits)
— Note that the 16-bit offset is given in terms of
instructions, not bytes and is relative to PC + 4



Designing a processor only for beg

Are these enough? How many adders do we need? How to do the selection?

> Add —
- __.-'"P-'
Read
1PCr '| address - ia?gter 1
9 Read |
Instruction .| Read data
[31-0] | register 2
Instruction Write Read |
memary - register data2
.| Write
data  Registers




Designing a processor only for beg

> Add —
4 - .--___.-H' -
v"--’ | ]
ALU |
>M" rasult
Read
1PCF "| address - ia?gmr 1
g Read
Instruction .| Read data
[31-0] | register 2
Instruction Write Read |
memary - register data2
.| Write
data  Registers




Desighing a processor only for beq
(answer)

B
H/ P >*“,.‘.‘\Ji}—q

*
7
/
A

e L=
Instrucsion [25:21)
Fead — 15N -
Instrucsion [20:16) Read data 1 >
Instruction ,_I | register 2 v g
1310) Reac AU A
Instruction data 2 e
memory /
Rogisters
Instrucsion [15:0) 16J'Q 2




In class exercise



