
MIPS Processor

In Class Exercise Question

• Design a 2-bit up-down counter with a control
signal U and a control signal R. If U=0, count
down, else count up. If R=1, reset counter to
0, else count as appropriate. You don’t have to
worry about output, as the value of each bit of
output is the same as the value of the counter.

In Class Exercise Answer

• This counter requires 4 states

• S0

– Counter is at 00, named 00

• S1

– Counter is at 01, named 01

• S2

– Counter is at 10, named 10

• S3

– Counter is at 11, named 11

In Class Exercise Answer

S0 S1 S2 S3

U=X, R=1

U=1, R=0 U=1, R=0 U=1, R=0

U=0, R=0

U=0, R=0 U=0, R=0 U=0, R=0

U=X, R=1

U=X, R=1

U=X, R=1

U=1, R=0

Q1 Q0 U R D1 D0

0 0 0 0 1 1

0 0 0 (X) 1 0 0

0 0 1 0 0 1

0 0 1 (X) 1 0 0

0 1 0 0 0 0

0 1 0 (X) 1 0 0

0 1 1 0 1 0

0 1 1 (X) 1 0 0

1 0 0 0 0 1

1 0 0 (X) 1 0 0

1 0 1 0 1 1

1 0 1 (X) 1 0 0

1 1 0 0 1 0

1 1 0 (X) 1 0 0

1 1 1 0 0 0

1 1 1 (X) 1 0 0

In Class Exercise Answer

• D0 =

 = ~R &~Q0

1 1

1 1

00 01 11 10

00

01

UR
Q1Q0

11

10

In Class Exercise Answer

• D1 =

= (~Q1 & ~Q0 & ~U & ~R) | (~Q1 & Q1 & U & ~R) |

 (Q1 & Q0 & ~U & ~R) | (Q1 & ~Q0 & U & ~R)

1 1

1 1

00 01 11 10

00

01

UR
Q1Q0

11

10

The Register File

• In MIPS, there are 32 Registers.

• In any given instruction, we will need to
read up to two registers, and write to up to
one register.

• Think registers as D flip-flops. Each register
has 32 Dffs (one for each bit).

• The data signals are:
– readReg1, readReg2: 5 bits. Used to specify

which register to read.

– writeReg: 5-bits. Used to specify which register to
write.

– writeData: 32-bits. The value that should be
written into the writeRegister.

– readData1, readData2: 32-bits. The value that will
be read out of readRegister1 and readRegister2

• The control signals are:
– RegWrite: whether to write or not.

• This is for read.

• The data is connected to every register.

• Use RegWrite, generate a ``LOAD’’ signal for
the register you want to write to.

Every register has a LOAD signal. If that
signal is `1’, new data will be set.

 Only the target register’s LOAD signal is
`1’.

To write to a register

RAM

11/8/2007 10:04:17 AM week11-5.ppt 12

A RAM Example
• RAM. Data signals:

– address: 21-bits. If write, which
location to write to. If read, which
location to read from.

– Din: 16-bits. The data that should
be written into the location
specified by the address.

– Dout: 16-bits. The data that is
read out of the location specified
by the address

– RAM. Control signals:
– Chip select: whether to use this

chip or not.

– Output enable: whether to
enable output (output some
voltage or in high-impedence
state)

– Write enable: whether to read or
write.

The processor

• We now know all the parts in the processor.

– ALU

– PC

– Register file

Also

– RAM

• How to put them together? How to make
them execute an instruction as we need?

ALU

11/18/2007 7:39:36 PM week13-1.ppt 15

Basic MIPS Implementation

• We will focus on design of a basic MIPS
processor that includes a subset of the core
MIPS instruction set

– The arithmetic-logic instructions:

• add, sub, and, or, and slt

– The memory-reference instructions:

• load word and store word

– The branching instructions:

• branch equal and jump

The execution of an instruction

• First, we need to fetch the instruction at the address given by
the current PC from instruction memory

• Second, we need to decode the instruction

• Third, we grab the values from the register file

• Fourth, we need to perform ALU operations on the values

• Fifth, the output from the ALU goes to back to the register file
and/or data memory

• Sixth, based on the instruction, we need to update the PC in
one of two ways
– For sequential instructions, we then go the next instruction by setting

PC = PC + 4.

– For jump and branch instructions, PC will be changed based off the
value from the ALU

11/18/2007 7:39:36 PM week13-1.ppt 18

MIPS Implementation Overview

• For every instruction, the first three steps are
identical

– Fetch the instruction from the memory according to the
value of the program counter

– Parse the fields of the instructions using the encodings

– Read one or two registers
• For load word, we need to read only one register

• Most other instructions (except jump) require we read two
registers

– After the two steps, the actions required depend on the
instructions
• However, the actions are similar

11/18/2007 7:39:38 PM week13-1.ppt 19

Instruction Fetch and PC Increment
• Since for every instruction, the first step is to fetch

the instruction from memory

– In addition, for most instructions, the next instruction will
be at PC + 4

11/18/2007 7:39:38 PM week13-1.ppt 20

R-type Instructions
• Also called arithmetic-logical instructions

– Including add, sub, and, or, and slt

– Each one reads from two registers, performs an
arithmetic or logical operation on the registers,
and then write the result to a register

11/15/2007 5:02:08 PM week-13-3.ppt 21

R-type Instructions

• Suppose the instruction is add $t0, $t1,
$t2, what are the read reg1, read reg2, and write
reg? What is the value of RegWrite? How to control
the ALU to do add? ($t0 == $8)

Datapath only for R-type instructions

Datapath only for R-type instructions
(Answer)

11/15/2007 5:02:10 PM week-13-3.ppt 24

Data Transfer Instructions

• Load word and store word instructions have
the following general form
– lw $rt, offset_value($rs)

• opcode (6 bits) rs (5 bits) rt (5 bits) offset (16 bits)

– sw $rt, offset_value($rs)

• opcode (6 bits) rs (5 bits) rt (5 bits) offset (16 bits)

– They need to compute a memory address by
adding the base register to the sign-extended 16-
bit offset

Load

• For instruction load $t0, 16($t1),
what should the control signal be?

Data path

Data path only for lw (answer)

Data path only for sw (answer)

11/18/2007 7:39:42 PM week13-1.ppt 29

Branch Instruction

• Beq has three operands, two registers that are
compared for equality and a 16-bit offset used
to compute the branch-target address
– beq $rs, $rt, offset

• opcode (6 bits) rs (5 bits) rt (5 bits) offset (16 bits)

– Note that the 16-bit offset is given in terms of
instructions, not bytes and is relative to PC + 4

Designing a processor only for beq

Are these enough? How many adders do we need? How to do the selection?

Designing a processor only for beq

11/18/2007 7:39:43 PM week13-1.ppt 32

Designing a processor only for beq
(answer)

In class exercise

