
MIPS processor continued

In Class Exercise Question

• Show the datapath of a processor that
supports only R-type and jr reg instructions

In Class Exercise Answer

• Show the datapath of a processor that
supports only R-type and jr reg instructions

0

M

U

X

1

25:21

20:16

15:11

Performance

• Assume that
– Memory access: 200ps
– ALU and adders: 100 ps
– Register file read: 50ps
– Register file write: 10ps (the clk-to-q delay)
– PC update: 10ps (the clk-to-q delay)
– The setup time of DFFs: 10ps
– Other parts do not have delay

• How fast is
– An R-type instruction?
– A lw instruction?
– A sw instruction?
– A beq instruction?

• Need to find the critical path – the longest path

R-type
PC
ready

instruction
ready

register
ready

ALU
ready

register
written

• So, the clock needs to be at least 10+200+50+100+10 = 370ps
• Will there be a problem if the next instruction is also an R-type

instruction, considering that the register is written and stable only
after the next rising edge of the clock?

• Figure not to the exact scale

lw

• So, the clock needs to be at least
10+200+50+100+200+10 = 570ps

• Figure not to the exact scale

PC
ready

instruction
ready

register
ready

ALU
ready

register
written

Data mem
ready

beq

• So, it is 10+200+50+100+10 = 370ps

• Figure not to the exact scale

PC
ready

instruction
ready

register
ready

ALU
ready

Adder 1
ready

Adder 2
ready

PC
written

Clock cycle

• So, how long should the clock cycle be?

• Is it efficient?

Control Signals

• Control signals include ALUCtrl and the signals
to control the 2-1 selectors

• They are generated according to the current
instruction, using the opcode [31-27] and the
funct [5-0] field in the instruction.

Datapath for Memory, R-type and Branch
Instructions, plus the control signals

11

The Effect of Control Signals
Signal name Effect when deasserted Effect when asserted

RegDst The register destination number for the

Write register comes the rt field (20:16)

The register destination number for the Write

register comes the rd field (15:11)

RegWrite None. The register on the Write register input is

written with the value on the Write data input.

ALUSrc The second ALU operand comes from the

second register file output

The second ALU operand is the sign-extended,

lower 16 bits of the instruction

PCSrc The PC is replaced by the output of the

adder that computes the value of PC + 4

The PC is replaced by the output of the adder

that computes the branch target

MemRead None. Data memory contents designated by the

address input are out on the Read data output.

MemWrite None. Data memory contents designated by the

address input are replaced by the value on the

Write data input.

MemtoReg The value fed to the register Write data input

comes from the ALU

The value fed to the register Write data input

comes from the data memory

Table for Control Line Setting

Instruction RegDst ALUSrc Memto-

Reg

Reg

Write

Mem

Read

Mem

Write

Branch

ALUOp1

ALUOp0

R-format

Lw

Sw

beq

Note: Branch is anded with ALU zero output to produce PCSrc

13

Table for Control Line Setting

Instruction RegDst ALUSrc Memto-

Reg

Reg

Write

Mem

Read

Mem

Write

Branch

ALUOp1

ALUOp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq X 0 X 0 0 0 1 0 1

14

Truth Table for Control Function

15

Implementation Using PLA
The way to
read this --
There are only 4
possible
combination
of inputs

R beq sw lw

MIPS ALU unit

11/15/2007 5:02:13 PM week-13-3.ppt 17

ALU Control
•Use Opcode to get ALUOp, then combine ALUOp with Funct
•Two levels of decoding, more efficient
•Assume ALUOp has been determined as such for each instruction

18

One Implementation

ALU control bit 3 is always 0 for this set of instructions

Can verify that the output is correct for lw, sw, beq

For R-type, op2=F1, op1= ~F2, op0 = F3 | F0

