
Overview of
Processor Techniques

A brief look at CDA 3101

and CDA 5155

Single Cycle Machine

• What we learned over the course of this
semester

• Each instruction is executed fully before the
next instruction can start

• Requires the clk to be set to the slowest
instruction

• Whilst executing instructions, each
component will be unused for most of the
execution and some may never be used.

Single Cycle Machine

Multi Cycle Machine

• Breaks up the data path into stages and saves the results of each stage
into special registers

• Typical stages:

– IF (Instruction Fetch)

– ID (Instruction Decode)

– EX (Execute)

– MEM (Memory Access)

– WB (Write Back)

• Clk is set to be the longest stage

• Each instruction still executes to completion but now takes an amount of
clk cycles equal to the number of stages

• Not really any faster than Single Cycle as you still have to wait for the
instruction to finish; in fact, it’s a little slower because now you have to
save results to registers and the slow stages stall the faster ones

• Not ever really used; the ideas quickly turned into ….

Pipelining

• Found in most modern processors

• Takes the stages idea from multi cycle, but
executes a different instruction within each
stage

– This, in theory, makes pipelining ‘number of
stages’ faster than multi cycle or single cycle

– In practice, however, various problems crop up

Pipelining

Pipelining

• Problems you have to worry about:

– Data hazards: Later instructions reading from register/memory values not yet
stored

– Control hazards: Branch instructions might need to go to a different section of
code, yet there will be several instructions in the pipe that are executing that
shouldn’t be there

• Solutions:

– Data hazards:

• Do nothing (not a solution)

• Stall

• Forward

– Control hazards:
• Do nothing (not a solution)

• Flush

• Predict (and Flush)

Branch Prediction

• Used to lower the amount of flushes the processor has to due in event of
a branch

• The simplest is to always predict not taken and just fetch the next
instruction which is what the processor does in the normal case

• More advanced implementations keep a state counter remembering what
the result of the previous occurrence of the branch was

• The results are stored in a buffer mapping the pc of the branch to the
value of taken/not taken and the offset to where the branch instruction
branches to

• If you want to predict not taken, just fetch the next instruction like always

• If you want to predict take, branch to the offset stored within the branch
buffer

• In the event of a mispredict, just flush, load the proper pc, and update the
branch prediction buffer

Cache

• Like the branch prediction buffer, but used to increase
memory accesses speeds

• Stores a copy of a memory value within a smaller memory
unit

• Since the unit is smaller (and closer) it takes less time to get
the value allowing you to decrease the clk even further

• Typically, there are multiple layers (e.g. have a 4MB L2 cache
and a 512 KB L1 cache), as well as specialized caches (e.g.
instruction cache)

• Not perfect, if there are lots of misses it will be slower as you
have to access L1 then L2 and then memory

Cache

More Advanced Techniques
• Super scalar

– Executes multiple instructions at a time by adding more
components

– Diminishing returns after 2 (that is the amount of
hardware used and heat generated goes up faster than the
speed increase)

– Commonly, processors use 2, 4, or 8 way scaling

– Add on to other designs like single cycle or pipelining

More Advanced Techniques
• Vector processors

– Used in scientific computing

– Executes on arrays of data (e.g. add one array with another
and store the results in a third array)

– Only refers to register storage and ALU processing, so it
can be used with other designs too

More Advanced Techniques
• Out of order execution (in order arrival / completion)

– Very complicated and not used in processors that care
about power consumption / heat

– Groups instructions into certain types (e.g. add group,
memory group)

– Places instructions into wait queues until the operands
have been calculated

– Executes ready instructions in parallel (adds more
dedicated hardware)

– Places the results in a larger queue where the instructions
come in at

– When the lead instruction has fully executed it is removed
and another instruction is fetched

More Advanced Techniques
• Out of order execution (in order arrival / completion)

More Advanced Techniques
• Multiprocessing / multicore

– Adds small, simple, independent
processors within a single physical
processor

– Allows communication through
specialized networks and through
the larger cache

– Each processor also has it’s own
smaller cache levels

Other Processors

Other Processors

• Having learnt MIPS, we can learn other major
processors.

• This is only going to be a cursory glance at
some interesting differences of the major
processors compared to MIPS

ARM

• Advanced RISC Machine

• The major processor for mobile and
embedded electronics, such as phones and
tablets

• Features are: simple design, low power, low
cost

ARM

• One of the most interesting features is the
conditional execution.

• That is, an instruction will execute if some
condition is true, otherwise it will not do
anything (turned into a nop).

ARM

• A set of flags, showing the relation of two
numbers : gt, equal, lt.

– cmp Ri, Rj # set the flags depending on the values in Ri and Rj

– subgt Ri, Ri, Rj # i = i – j if flag is gt

– sublt Ri, Ri, Rj # i = i – j if flag is lt

– bne Label # goto Label if flag is not equal

ARM

• How to implement
while (i != j) {

 if (i > j)

 i -= j;

 else

 j -= i;

}

ARM

• In MIPS, assume i is in $s0, j in $s1:
Loop: beq $s0, $s1, Done

 slt $t0, $s0, $s1

 beq $t0, $0, L1

 sub $s1, $s1, $s0

 j Loop

L1: sub $s0, $s0, $s1

L2: j Loop

ARM

• In ARM,

Loop: cmp Ri, Rj

 subgt Ri, Ri, Rj

 sublt Rj, Rj, Ri

 bne Loop

ARM

• Discussion: Given the MIPS hardware setup,
can we support conditional execution?

ARM
• Another interesting feature is its ability to fold

shift instructions into data processing
instructions (add, sub, move, etc)

• In C:

– a += (j << 2);

• In MIPS (assuming a in $s0 and j in $s1):

– sll $t0, $s1, 2

– add $s0, $s0, $t0

• In ARM:

– ADD Ra, Ra, Rj, LSL #2

Intel Processor

9/27/2007 11:23:31 PM week06-3.ppt 27

Basic Program Execution Registers

• General purpose registers

– There are eight registers (note that they are not
quite general purpose as some instructions
assume certain registers)

• Segment registers

– They define up to six segment selectors

• EIP register – Effective instruction pointer

• EFLAGS – Program status and control register

9/27/2007 11:23:32 PM week06-3.ppt 28

General Purpose and Segment Registers

29

General Purpose Registers

• EAX — Accumulator for operands and results data

• EBX — Pointer to data in the DS segment

• ECX — Counter for string and loop operations

• EDX — I/O pointer

• ESI — Pointer to data in the segment pointed to by the DS
register; source pointer for string operations

• EDI — Pointer to data (or destination) in the segment pointed
to by the ES register; destination pointer for string operations

• ESP — Stack pointer (in the SS segment)

• EBP — Pointer to data on the stack (in the SS segment)

30

Alternative General Purpose Register Names

31

Segment Registers

10/7/2007 9:37:48 PM week07-1.ppt 32

SIMD

• To improve performance, Intel adopted SIMD (single instruction multiple
data) instructions.

• Streaming SIMD Extensions (SSE) introduced eight 128-bit data registers
(called XMM registers)

– In 64-bit modes, they are available as 16 64-bit registers

– The 128-bit packed single-precision floating-point data type, which
allows four single-precision operations to be performed
simultaneously

10/7/2007 10:01:43 PM week07-1.ppt 33

GCC Inline Assembly

• GCC inline assembly allows us to insert inline
functions written in assembly
– http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

– GCC provides the utility to specify input and output
operands as C variables

– Basic inline

– Extended inline assembly

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

10/7/2007 10:03:01 PM week07-1.ppt 34

GCC Inline Assembly
• A simple example:

Using SSE

#define mulfvec4_SSE(a, b, c) \

{ \

__asm__ __volatile__ ("movups %1, %%xmm0 \n\t" \

 "movups %2, %%xmm1 \n\t" \

 "mulps %%xmm0, %%xmm1 \n\t" \

 "movups %%xmm1, %0 \n\t" \

 :"=m" (c) \

 :"m" (a), \

 "m" (b)); \

}

BCM4306 Wireless Card
Processor

A Part of the Code from
http://www.ing.unibs.it/~openfwwf/

http://www.ing.unibs.it/~openfwwf/

