Overview of
Processor Techniques

A brief look at CDA 3101
and CDA 5155

Single Cycle Machine

What we learned over the course of this
semester

Each instruction is executed fully before the
next instruction can start

Requires the clk to be set to the slowest
Instruction

Whilst executing instructions, each
component will be unused for most of the
execution and some may never be used.

Single Cycle Machine

N

Add

PC

Read
address

Instruction
[31-10]

Instruction
memory

Instruction [5—0]

ALUOp

RegWrite
|
Instruction [25—21] | Read
" | register 1 dReaqd . MemWrite
Instruction [20— 16] Read ata N " VemtoRec
i register 2 Read ALUSrc Zero [¢‘|._.I]IluH._._[__|
Lb 1 . ca ALU ALU
M Write data 2 1 result Address Read 1
. u register M data M
Instruction [15—11] | x Write u U
® * 0| ™ data Registers E X
Write Data 0
RegDst # qata Memory
Instruction [15—0] 16 { sign |32 |'
*| extend MemRead

Multi Cycle Machine

Breaks up the data path into stages and saves the results of each stage
into special registers

Typical stages:

IF (Instruction Fetch)
ID (Instruction Decode)
EX (Execute)

MEM (Memory Access)
WB (Write Back)

Clk is set to be the longest stage

Each instruction still executes to completion but now takes an amount of
clk cycles equal to the number of stages

Not really any faster than Single Cycle as you still have to wait for the
instruction to finish; in fact, it’s a little slower because now you have to
save results to registers and the slow stages stall the faster ones

Not ever really used; the ideas quickly turned into

Pipelining

 Found in most modern processors

* Takes the stages idea from multi cycle, but
executes a different instruction within each
stage

— This, in theory, makes pipelining ‘number of
stages’ faster than multi cycle or single cycle

— In practice, however, various problems crop up

Pipelining

Instruction *lInstr. Decode ' Execute + Memory ' Write
Fetch * Reg. Fetch * Addr, Calc . Access * Back

Next SEQ PC MNext SECQ PC

. -

—*

MNext PC

- g.g

B0 B

Pipelining

* Problems you have to worry about:
— Data hazards: Later instructions reading from register/memory values not yet
stored

— Control hazards: Branch instructions might need to go to a different section of
code, yet there will be several instructions in the pipe that are executing that
shouldn’t be there

e Solutions:
— Data hazards:
* Do nothing (not a solution)
e Stall
* Forward

— Control hazards:
* Do nothing (not a solution)
* Flush
* Predict (and Flush)

Branch Prediction

Used to lower the amount of flushes the processor has to due in event of
a branch

The simplest is to always predict not taken and just fetch the next
instruction which is what the processor does in the normal case

More advanced implementations keep a state counter remembering what
the result of the previous occurrence of the branch was

The results are stored in a buffer mapping the pc of the branch to the
value of taken/not taken and the offset to where the branch instruction
branches to

If you want to predict not taken, just fetch the next instruction like always

If you want to predict take, branch to the offset stored within the branch
buffer

In the event of a mispredict, just flush, load the proper pc, and update the
branch prediction buffer

Cache

Like the branch prediction buffer, but used to increase
memory accesses speeds

Stores a copy of a memory value within a smaller memory
unit

Since the unit is smaller (and closer) it takes less time to get
the value allowing you to decrease the clk even further

Typically, there are multiple layers (e.g. have a 4MB L2 cache
and a 512 KB L1 cache), as well as specialized caches (e.g.
instruction cache)

Not perfect, if there are lots of misses it will be slower as you
have to access L1 then L2 and then memory

Capacity

Cache

Disk

10

Memory

10

L3 cache

IL

L2 cache

10
[L1 cache |

Latency

More Advanced Techniques

e Super scalar

— Executes multiple instructions at a time by adding more

components

— Diminishing returns after 2 (that is the amount of

hardware used and heat generated goes up faster than the

speed increase)

— Commonly, processors use 2, 4, or 8 way scaling

— Add on to other designs like single cycle or pipelining

e

Fetch

Decode

(Even)

Decode

(Odd)

E—

Execut

(Even)

Execut

(Odd)

e

Memory

(Even)

Write
back

Memory

(Odd)

More Advanced Techniques

* \ector Processors
— Used in scientific computing

— Executes on arrays of data (e.g. add one array with another
and store the results in a third array)

— Only refers to register storage and ALU processing, so it
can be used with other designs too

Vector Register Vector Register

N N N
N-1 N-1 N-1
3 3 3
2 2 2
1 1 1
0 0 0
'i ‘ Vector Register
\V4

Each "Vector Register" is a register
ALU file with N registers, each holding one
element in the vector.

More Advanced Techniques

* QOut of order execution (in order arrival / completion)

— Very complicated and not used in processors that care
about power consumption / heat

— Groups instructions into certain types (e.g. add group,
memory group)

— Places instructions into wait queues until the operands
have been calculated

— Executes ready instructions in parallel (adds more
dedicated hardware)

— Places the results in a larger queue where the instructions
come in at

— When the lead instruction has fully executed it is removed
and another instruction is fetched

More Advanced Techniques

* Qut of order execution (in order arrival / completion)

L2 Cache and Control

-_iré‘

f—a
|

BTB & I-TLB

Fetch/Deco de

Trace Cache
pop Qilﬂlﬂ
Schedulers

L1 D-Cache and D-TLB

{e) Allocate; Register renaming

More Advanced Techniques

* Multiprocessing / multicore

— Adds small, simple, independent
processors within a single physical

processor

— Allows communication through _ Multi-Core Processor
specialized networks and through cPU oPU
the larger cache 1 Gache L1 Gache

— Each processor also has it’s own % H
smaller cache levels "7 Cache

CPU CFPU

Other Processors

Other Processors

* Having learnt MIPS, we can learn other major
pProcessors.

* This is only going to be a cursory glance at
some interesting differences of the major
processors compared to MIPS

ARM

e Advanced RISC Machine

 The major processor for mobile and
embedded electronics, such as phones and
tablets

* Features are: simple design, low power, low
cost

ARM

* One of the most interesting features is the
conditional execution.

 Thatis, an instruction will execute if some
condition is true, otherwise it will not do
anything (turned into a nop).

ARM

* Aset of flags, showing the relation of two
numbers : gt, equal, It.
— cmp Ri, Rj # set the flags depending on the values in Ri and Rj
—subgt R1, R1, Rj #i=1-jifflagis gt
—sublt R1, R1, Ry #i=i-jifflagis1t

— bne Label # goto Label if flag 1s not equal

ARM

* How to implement
while G =) {

if (G >3)
1-=7;
else
] =1

ARM

* |[n MIPS, assume1isin $s0, j in $s1:
Loop: beq $s0, $s1, Done
slt $t0, $s0, $s1
beq $t0, $0, L1
sub $s1, $s1, $s0
j Loop
L1: sub $s0, $s0, $s1
L2: 3 Loop

ARM

* [In ARM,

Loop: cmp Ri1, R;j
subgt Ri1, Ri1, Rj
sublt Rj, Rj, R1
bne Loop

ARM

* Discussion: Given the MIPS hardware setup,
can we support conditional execution?

ARM

Another interesting feature is its ability to fold
shift instructions into data processing
instructions (add, sub, move, etc)

In C:

—a+=(j << 2);

In MIPS (assuming a in SsO and j in $s1):

—sll StO, Ss1, 2

— add Ss0, Ss0, St0

In ARM:

— ADD Ra, Ra, Rj, LSL #2

Intel Processor

Basic Program Execution Registers

General purpose registers

— There are eight registers (note that they are not
qguite general purpose as some instructions
assume certain registers)

Segment registers

— They define up to six segment selectors
EIP register — Effective instruction pointer
EFLAGS — Program status and control register

General Purpose and Segment Registers

G -P Regist
31 eneral-Purpose Registers 0

EAX
EBX
ECX
EDX
ESI

EDI

EBP
ESP

Segment Reqisters
15 0

cS
DS
S5
ES
FS
GS

General Purpose Registers

EAX — Accumulator for operands and results data
EBX — Pointer to data in the DS segment

ECX — Counter for string and loop operations
EDX — 1/O pointer

ESI — Pointer to data in the segment pointed to by the DS
register; source pointer for string operations

EDI — Pointer to data (or destination) in the segment pointed
to by the ES register; destination pointer for string operations

ESP — Stack pointer (in the SS segment)
EBP — Pointer to data on the stack (in the SS segment)

Alternative General Purpose Register Names

General-Purpose Reqisters

31 1615 8 7 0 16-bit 32-bit
AH AL AX EAX
BH BL BX EBX
CH CL CX ECX
DH DL DX EDX
BP EBP
Sl ESI
DI EDI
SP ESP

Segment Registers

Segment Registers

Code
Segment
Data

’—» Segment

CS
D5 Stack
SS Segment
ES
FS =l
0S —
-
Data
Segment
Data
Segment
- Data
Segment
L.
»

All segments
are mapped
to the same
inear-address
space

SIMD

To improve performance, Intel adopted SIMD (single instruction multiple
data) instructions.

Streaming SIMD Extensions (SSE) introduced eight 128-bit data registers
(called XMM registers)

— In 64-bit modes, they are available as 16 64-bit registers

— The 128-bit packed single-precision floating-point data type, which
allows four single-precision operations to be performed
simultaneously

Source 1 X3 X2 X1 X0

Source 2 Y3 Y2 Y1 Y0

Destination X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP Y0

GCC Inline Assembly

e GCCinline assembly allows us to insert inline

functions written in assembly
— http://www.ibiblio.org/gferg/Idp/GCC-Inline-Assembly-HOWTO.html

— GCC provides the utility to specify input and output
operands as C variables

— Basicinline

asm("movl Secx %eax"):; /*¥ moves the contents of ecx to esax */
__asm__ ("movb %bh (%eax)"):; /*moves the byte from bh
to the memory pointed by eax */

— Extended inline assembly

asm (assembler template

: output operands /* optional */
: input operands /* optional */
list of clobbered registers /* optional */

10/7/2007 10:01:43 PM week07-1.ppt 33

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html
http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html

GCC Inline Assembly

* Asimple example:

int main(void)

{

int foo = 10, bar = 15b;

asm_ volatile ("addl %%ebx,%%ecax’
:"=a" (foo)
:"a"(foo), "b" (bar)
) ;

printf ("foot+bar=%d\n", foo):;

return 0;

10/7/2007 10:03:01 PM week07-1.ppt

34

Using SSE

#define mulfvecd4 SSE(a, b, c) \

{\

__asm___ volatile ("movups %1, $$xmm0 \n\t" \
"movups %2, %$%xmml \n\t" \
"mulps $%xmm0, %$%xmml \n\t" \
"movups %$%$xmml, %0 \n\t" \
"=m" (c) \

m" (a), \

"m" (b)); \

BCM4306 Wireless Card
Processor

A Part of the Code from
http://www.ing.unibs.it/~openfwwf/

l."ll." LR s]

/f HANDLER:
/f PURPOSE:

i

state_machine start
Checks conditions looking for something to do.

state_machine idle:;

mov
jnzx
jnzx
mov
nap;

0, WATCHDOG

0, 3, GLOBAL FLAGS REG3, 0x000, state_machine start;
a, 9, [5HM HF MI], 0x000, state machine start;
0xFFFF, 5FR_MAC MRY HNAF;

state_machine start:;

jnext
jzx
mov
or
call

ECTI (CONMD_BADAR), no_radar workaround;

0, 13, [5HM HF 1.0], 0x000, no_radar workaround;
0x00C8, GP_REGS;

[SHM BRDER], Ox000, GP_EEGE;

1r0, write phy reg;

no_radar workaround:;
extcond eoi_only (COND _PHYO) ;
extcond eoi_only (COND _PHY1);

OrX
jzx
OrX
or
call

1, 3, 0x000, GLOBAL FLAGS REGZ, GLOBAL FLAGS REGZ;
0, 3, 3PE_IF3 53TAT, 0x000, check mac_ status;

1, 1, 0x000, GLOBAL FLAGS REGZ, GLOBAL FLAGS REGZ;
[SHM GCLASSCTL], Ox000, GP_REGE;

1rl, gphy_classify control_with_arg:

check_mac status:;

jnext
jext

COND_MACEN, mac suspend_ check;
COND TX FLUSH, check conditions;

."r*

."r*
."r*
."r*

."r*
."r*
."r*
."r*

."r*

If there i3 no coming job firmware 3sleeps for a while or suspends device.

This bit was set and reset in bg noise sample */

Sleep for a while.. */

if (!{shm_host_flags_1 = MHF BRDARWRR)) */
GP_REGS = APHY RADAR THRESH1 */
write [5HM BADRR] into GF_REGS */

clear bits 0x1E */
if (!'{SFR_IF3 STAT = 0x08)) */
GLOBAL FLAGS REGZ & ~AFTEREURNER TX|AFTEREUENEE EX */

Classify control from SHM to BHY */

Check if we can sleep */

http://www.ing.unibs.it/~openfwwf/

