
Final Review

Format

• 10 multiple choice – 8 points each

– Make sure to show your work

– Can write a description to the side as to why you
think your answer is correct for possible partial
credit

• 1 short answer – 20 points

– Broken into 5 5point sub problems

• Same basic principals as the midterm

What to Know: Pre-Midterm

• 30% of multiple choice

• MIPS coding

• Emphasis on:

– floating point

– strings

– arrays/loops

What to Know: Post-Midterm

• 70% of multiple choice and short answer

• How to generate truth tables

• How to write logic functions

• How to use k-maps

• How to generate simplified circuits

• How handle state based circuits

– Counters, sequence detectors, etc

• How to show processor data flow for one or more
instructions and those only

• How to generate control signals in the processor

What will NOT be on the exam

• Processor component specifics

– ALU

– Registers

– Memory

• Verilog

• Gate diagrams

• Gates other than AND, OR, NOT, XOR

• Conceptual questions (everything will be problem
solving like the homeworks)

• Non-MIPS processors

Semester Review

Interger Number Representations

• To convert an unsigned decimal number to binary:
you divide the number N by 2, let the remainder be
the first digit. Then divide the quotient by 2, then let
the remainder be d1, then divide the quotient by 2,
then let the remainder be d2, until the quotient is
less than 2.

• 2’s complement. To convert a negative number to
binary: invert each bit, and then add 1.

Problem

The binary representation of -57ten in 8 bits in 2’s
complement is

(a) 11000111

(b) 10011111

(c) 11010111

(d) None of the above.

Number with Fractions

• Numbers with fractions. Convert the integer part and
the fraction part to binary separately, then put a dot
in between.

• To get the binary representation of the fraction, divide the
fraction first by 0.5 (2-1), take the quotient as the first bit of
the binary fraction, then divide the remainder by 0.25 (2-2),
take the quotient as the second bit of the binary fraction,
then divide the remainder by 0.125 (2-3),…

– Floating numbers. Single precision. 32 bits.

Floating Numbers

• Single precision. 32 bits.

• Double precision. 64 bits. Bias is 1023.

)127Exponent(
2)Fraction.01()1(




S

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s Exponent fraction

1 bit 11 bits 20 bits

Fraction (continued)

32 bits

Special Cases Considered

Single precision Double precision Object represented

Exponent Fraction Exponent Fraction

0 0 0 0 0

0 nonzero 0 nonzero denormalized number

1-254 anything 1-2046 anything floating-point number

255 0 2047 0  infinity

255 nonzero 2047 nonzero NaN (Not a number)

Problem

The single precision floating number
representation of -22.75ten is

(a) 1 10000111 011 0100 0000 0000 0000 0000

(b) 1 10000011 011 0110 0000 0000 0000 0000

(c) 0 10000100 011 1110 0000 0000 0000 0000

(d) None of the above.

MIPS

• MIPS registers

MIPS

• MIPS instructions (not complete)
– R-type: add, sub, and, or, sll,…

• add $t0, $t1, $t2 # add $1, $t2, put the result in $t0

– Memory: lw, sw, lb, sb.
• lw $t0, 4($t1) # read the data at the address of

 # $t1+4, put it in $t0

– Branch: beq, bne, …
• beq $t0, $t1, SOMEWHERE # if $t0 is equal to $t1, the

 # next instruction to be
 # executed is at the address

 # specified by SOEMWHERE
 # (PC+4+offset)

– Jump: j, jal, jr
• j SOMEWHERE # the next instruction should be at the address

 # specified by SOMEWHERE (The upper 4 bits from PC+4, the
 # lower 26 bits from the instruction, the last 2 bits 0)

– Immediate type:
• addi $t0, $t0, 4 # add $t0 by 4 and put it in $t0

MIPS Instruction Encoding

• Each MIPS instruction is exactly 32 bits

– R-type (register type)

– I-type (immediate type)

– J-type (jump type)

 op rs rt rd shamt funct

 op rs rt 16 bit address or constant

 op 26 bit address

MIPS Coding

• If else. Assume f to h are in $s0 to $s4.

7/24/2013 week04-3.ppt 17

while loop
• Assume that i and k correspond to registers $s3

and $s5 and base array save is in $s6

Problem

If $t0 is holding 0, $t1 is holding 1, what will be the value stored in $t2 after
the following instructions?

 srl $t1, $t1, 1

 bne $t0, $t1, L1

 addi $t2, $t0, 1

L1: addi $t2, $t0, 2

(a) 1.

(b) 2.

(c) 3.

(d) None of the above.

Consider the following C code

 if (a > b)

 a = A[b];

 else

 A[a] = b;

where A is an integer array. Which of
the following correctly implements
the code above, assume a is in $t0,
b is in $t1, and the starting address
of A is in $s0? (bgt is “branch if
greater than.”)

(a)

 bgt $t0, $t1, L1

 add $t2, $t0, $s0

 lw $t1, 0($t2)

L1: add $t2, $t1, $s0

 sw $t0, 0($t2)

Exit:

 (b)

 bgt $t0, $t1, L1

 add $t2, $t0, $s0

 sw $t1, 0($t2)

 j Exit

L1: add $t2, $t1, $s0

 lw $t0, 0($t2)

Exit:

(c)

 bgt $t0, $t1, L1

 sll $t2, $t0, 2

 add $t2, $t2, $s0

 lw $t1, 0($t2)

 j Exit

L1: sll $t2, $t1, 2

 add $t2, $t2, $s0

 sw $t0, 0($t2)

Exit:

(d) None of the above.

MIPS Function

• jal Funct:
– The next instruction will be at address specified

by Funct

– PC+4 will be stored in $ra

• jr $ra:
– The next instruction will be the one at address

equal to the content in $ra

• Calling a function is more like going to a
function and then come back

.data
array:
 .word 12, 34, 67, 1, 45, 90, 11, 33, 67, 19
msg_done:
 .asciiz "done!\n"

 .text
 .globl main
main:
 la $s7, array
 li $s0, 0 #i
 li $s1, 0 #res
 li $s6, 9
loop:
 sll $t0, $s0, 2
 add $t0, $t0, $s7
 lw $a0, 0($t0)
 lw $a1, 4($t0)
 jal addfun
 add $s1, $s1, $v0
 addi $s0, $s0, 1
 beq $s0, $s6, done
 j loop

done:
 li $v0,4
 la $a0,msg_done
 syscall
 jr $ra

addfun:
 add $v0, $a0, $a1
 jr $ra

Problem

Consider the following code segment. What will the code do?

 li $ra, 0x04000000

 jal f1

 other instructions…

 f1: addi $ra, -8

 jr $ra

(a) It will enter a loop and can never come out.

(b) It will jump to the instruction located at address 0x04000000.

(c) It will call f1 once, then continue to execute other instructions following the jal f1
instruction.

(d) None of the above.

7/24/2013 week04-3.ppt 23

MIPS Calling Conventions

• MIPS assembly follows the following convention in
using registers

– $a0 - $a3: four argument registers in which to pass
parameters

– $v0 - $v1: two value registers in which to return values

– $ra: one return address register to return to the point of
origin

MIPS stack

• The stack in MIPS is a
memory space starting
at 0x7ffffffc and growing
DOWN.

• The top of the stack is
always pointed by the
stack pointer, $sp (the
address of the first
element space in the
stack should always be in
$sp).

• A function should save
the registers it touches
on the stack before
doing anything, and
restore it before
returning.

7/24/2013 week04-3.ppt 25

MIPS Calling Conventions - more

• MIPS software divides 18 of the registers into two groups
– $t0 - $t9: 10 temporary registers that are not preserved by the

callee on a procedure call
• These are caller-saved registers since the caller must save the ones it

is using

– $s0 - $s7: 8 saved registers that must be preserved on a
procedure call
• These are callee-saved registers since the callee must save the ones it

uses

• In general,
– if there is a register that the callee may change, and the caller

still needs it after calling the callee, the caller should save it and
restore it before using it, such as $ra.

– If there is a register that the caller is not expected to change
after calling the callee, the callee should save it, such as $s0.

7/24/2013 week04-3.ppt 26

Saving $s0

MIPS interrupt

• For external interrupt, your code is executing, and if an
event happens that must be processed,
– The address of the instruction that is about to be

executed is saved into a special register called EPC
– PC is set to be 0x80000180, where the interrupt

handlers are located
– Then, after processing this interrupt, call “eret” to set

the value of the PC to the value stored in EPC
– Note the difference between an interrupt and a

function call. In a function call, the caller is aware of
going to another address. In interrupt, the “main
program” is not.

Supporting floating point. Load and
Store

• Load or store from a memory location
(pseudoinstruction). Just load the 32 bits into
the register.

– l.s $f0, val

– s.s $f0, val

• Load immediate number (pseudoinstruction)

– li.s $f0, 0.5

Arithmetic Instructions

• abs.s $f0, $f1

• add.s $f0, $f1, $f2

• sub.s $f0, $f1, $f2

• mul.s $f0, $f1, $f2

• div.s $f0, $f1, $f2

• neg.s $f0, $f1

Data move

• mov.s $f0, $f1

• mfc1 $t0, $f0

• mtc1 $t0, $f0

Convert to integer and from integer

• cvt.s.w $f0, $f0 # convert the 32 bit in $f0
currently representing an integer to float of
the same value

• cvt.w.s $f0, $f0 # the reverse

Comparison instructions

• c.lt.s $f0,$f1 #set a flag in coprocessor 1if $f0
< $f1, else clear it. The flag will stay until set or
cleared next time

• c.le.s $f0,$f1 #set flag if $f0 <= $f1, else clear
it

• bc1t L1 # branch to L1 if the flag is set

• bc1f L1 # branch to L1 if the flag is 0

Read the MIPS code and answer the following
questions. What does function f1 do? What is the
value returned in $v0 after the function is called?

34

Digital Logic, gates

• Basic Gate: Inverter

I O
0
1

1
0

I O

GND I O

Vcc

Resister (limits conductivity)

Truth Table

35

Abstractions in CS (gates)

• Basic Gate: NAND (Negated AND)

A B
0
0
1
1

0
1
0
1

1
1
1
0

Y A
B

Y

GND A B Y

Vcc

Truth Table

36

Abstractions in CS (gates)

• Basic Gate: AND

A B
0
0
1
1

0
1
0
1

0
0
0
1

Y

A
B Y

Truth Table

37

Abstractions in CS (gates)

• Other Basic Gates: OR gate

A B
0
0
1
1

0
1
0
1

0
1
1
1

Y

A
B Y

Truth Table

38

Abstractions in CS (gates)

• Other Basic Gates: XOR gate

A B
0
0
1
1

0
1
0
1

0
1
1
0

Y

A
B Y

Truth Table

Design flow

• Given any function, first get the truth table.

• Based on the truth table, use the Karnaugh
Map to simplify the circuit.

Karnaugh Map

• Draw the map. Remember to make sure that the adjacent
rows/columns differ by only one bit.

• According to the truth table, write 1 in the boxes.
• Draw a circle around a rectangle with all 1s. The rectangle

must have size 2,4,8,16…Then, reduce the term by writing
down the variables that the values does not change. For
example, if there is a rectangle with two 1s representing
abc’ and abc, you write a term as ab.

• A term may be covered in multiple circles.
• The rectangle can wrap-around!
• Use the minimum number of circles. A single `1’ is also

counted as a circle.

K-map

• F=a’bc’+a’bc+abc’+abc+a’b’c

• F=b+a’c

0 1 1 0

1 1 1

00 01 11 10

0

1

ab
c

Problem

• A digital circuit has three inputs (X2, X1, X0), and one
output O. The output is `1’ if the inputs interpreted
as an unsigned integer is an even number less than 5.
Which of the following implements the function?

a. O = (~X2&~X0) | (X2&~X1&X0)

b. O = (~X2&~X0) | (~X1&~X0)

c. O = (~X2&~X1&~X0) | (~X2&X1&~X0) |
(X2&~X1&X0)

d. None of the above.

MIPS ALU unit

44

32-bit ALU that Supports Set Less Than

Problems

Verilog Data Types

• A wire specifies a combinational signal.

• A reg (register) holds a value, which can vary
with time. A reg need not necessarily
correspond to an actual register in an
implementation, although it often will.

Constants

• Constants is represented by prefixing the
value with a decimal number specifying its
size in bits.

• For example:

– 4’b0100 specifies a 4-bit binary constant with the
value 4, as does 4’d4.

Values

• The possible values for a register or wire in
Verilog are

– 0 or 1, representing logical false or true

– x, representing unknown, the initial value given to
all registers and to any wire not connected to
something

– z, representing the high-impedance state for
tristate gates

Operators

• Verilog provides the full set of unary and
binary operators from C, including

– the arithmetic operators (+, –, *, /),

– the logical operators (&, |, ~),

– the comparison operators (==, !=, >, <, <=, >=),

– the shift operators (<<, >>)

– Conditional operator (?, which is used in the form
condition ? expr1 :expr2 and returns expr1 if the
condition is true and expr2 if it is false).

Structure of a Verilog Program

• A Verilog program is structured as a set of modules, which may
represent anything from a collection of logic gates to a complete
system.

• A module specifies its input and output ports, which describe the
incoming and outgoing connections of a module.

• A module may also declare additional variables.
• The body of a module consists of

– initial constructs, which can initialize reg variables
– continuous assignments, which define only combinational logic
– always constructs, which can define either sequential or

combinational logic
– instances of other modules, which are used to implement the module

being defined

The half-adder. Example of continuous
assignments

module half_adder (A,B,Sum,Carry);

input A,B;

output Sum, Carry;

assign Sum = A ^ B;

assign Carry = A & B;

endmodule

• assign: continuous assignments. Any change in

the input is reflected immediately in the
output.

• Wires may be assigned values only with
continuous assignments.

One-bit Full Adder

module full_adder (A,B,Cin,Sum, Cout);
 input A,B,Cin;
 output Sum, Cout;

 assign Sum = (A & B & Cin) | (~A & ~B & Cin) | (~A & B & ~Cin) | (A & ~B & ~Cin);
 assign Cout = (A & Cin) | (A & B) | (B & Cin);

endmodule

Four-bit Adder

module four_bit_adder (A,B,Cin,Sum, Cout);
 input [3:0] A;
 input [3:0] B;
 input Cin;
 output [3:0] Sum;
 output Cout;

 wire C0, C1, C2;

 full_adder FA1(A[0], B[0], Cin, Sum[0], C0);
 full_adder FA2(A[1], B[1], C0, Sum[1], C1);
 full_adder FA3(A[2], B[2], C1, Sum[2], C2);
 full_adder FA4(A[3], B[3], C2, Sum[3], Cout);

endmodule

D-flip-flop

module Dff1 (D, clk, Q, Qbar);
 input D, clk;
 output reg Q, Qbar;

 initial begin
 Q = 0;
 Qbar = 1;
 end

 always @(posedge clk) begin
 #1
 Q = D;
 #1
 Qbar = ~Q;
 end
endmodule

Delay

• Real circuits have delays caused by charging
and discharging.

• So, once the input to a gate changes, the
output will change after a delay, usually in the
order of nano seconds. An and gate:

 A

B

output

Sequential Circuits

• A three-bit counter.

• First, get the next state table. Then, generate
D2, D1, D0.

Q2 Q1 Q0 D2 D1 D0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 1 1 1

1 1 1 0 0 0

FSM example – A sequence detector

• One input X, and one output O.

• X may change every clock cycle. The change
happens at the falling edge.

• The circuit samples the input at every rising
edge of the clock. If the input is 1, consider as
read a 1, else read a 0.

• O is 1 (for one clock cycle, from positive edge
to positive edge) if the last three bits read are
101.

4 states

• S0: got nothing.
The initial state.

• S1: got 1.

• S2: got 10.

• S3: got 101.

S0 S1

X = 1

X = 0

S2 S3

Assign states

• S0 = 00

• S1 = 01

• S2 = 10

• S3 = 11

Next State Function

Q1 Q0 X D1 D0

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 0 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 0

1 1 1 0 1

D1 = (Q0&~X)|(Q1&~Q0&X)

D0 = X

The output function

• Clearly, O = Q1&Q0.

Datapath only for R-type instructions

Data path only for lw

Data path only for sw

Data path only for lw and sw

11/18/2007 7:39:44 PM week13-1.ppt 68

Datapath for Memory and R-type Instructions

11/18/2007 7:39:43 PM week13-1.ppt 69

Datapath only for beq

Datapath for R-type, memory, and
branch operations

Problem

Problem

Answer

Also, RegWrite = ~Instruct[31] | (Instruct[31] & zero)

