Final Review

Format

e 10 multiple choice — 8 points each
— Make sure to show your work

— Can write a description to the side as to why you
think your answer is correct for possible partial
credit

* 1 short answer — 20 points

— Broken into 5 5point sub problems

* Same basic principals as the midterm

What to Know: Pre-Midterm

* 30% of multiple choice
* MIPS coding

 Emphasis on:
— floating point
— strings
— arrays/loops

What to Know: Post-Midterm

70% of multiple choice and short answer
How to generate truth tables

How to write logic functions

How to use k-maps

How to generate simplified circuits

How handle state based circuits
— Counters, sequence detectors, etc

How to show processor data flow for one or more
instructions and those only

How to generate control signals in the processor

What will NOT be on the exam

Processor component specifics
— ALU

— Registers

— Memory

Verilog
Gate diagrams
Gates other than AND, OR, NOT, XOR

Conceptual questions (everything will be problem
solving like the homeworks)

Non-MIPS processors

Semester Review

Interger Number Representations

* To convert an unsigned decimal number to binary:
you divide the number N by 2, let the remainder be
the first digit. Then divide the quotient by 2, then let
the remainder be d1, then divide the quotient by 2,

then let the remainder be d2, until the quotient is
less than 2.

e 2’s complement. To convert a negative number to
binary: invert each bit, and then add 1.

Problem

The binary representation of -57
complement is

(a) 11000111
(b) 10011111
(c) 11010111
(d) None of the above.

in 8 bits in 2’s

ten

Number with Fractions

 Numbers with fractions. Convert the integer part and
the fraction part to binary separately, then put a dot
in between.

* To get the binary representation of the fraction, divide the
fraction first by 0.5 (21), take the quotient as the first bit of
the binary fraction, then divide the remainder by 0.25 (2-2),
take the quotient as the second bit of the binary fraction,
then divide the remainder by 0.125 (273),...

— Floating numbers. Single precision. 32 bits.

Floating Numbers

* Single precision. 32 bits.

31 30 23|22

S = F

1 bit 8 bits 23 bits
(—1)S x (1 + O.Fraction) x 2

* Double precision. 64 bits. Bias is 1023.

(Exponent -127)

31 30129 |28 | 27 | 26 | 25| 24 | 23 | 22| 21 | 20| 19 (18 |17 |16 | 15 | 14 | 13 | 12 | 11 | 10 9 8 7 6

S Exponent fraction

1 bit 11 bits 20 bits

Fraction (continued)

32 bits

Special Cases Considered

Single precision

Double precision

Object represented

Exponent Fraction Exponent Fraction
0 0 0 0 0
0 nonzero 0 nonzero +denormalized number
1-254 anything 1-2046 anything +floating-point number
255 0 2047 0 + infinity
255 nonzero 2047 nonzero NaN (Not a number)

Problem

The single precision floating number
representation of -22.75,_,,is

(@) 1 10000111 011 0100 0000 0000 0000 0000
(b) 1 10000011 011 0110 0000 0000 0000 0000

(c) 0 10000100 011 1110 0000 OO00 0000 0000
(d) None of the above.

- M

MIPS

PS registers

Register | Mnemonic Conventional Use Register | Mnemonic Conventional Use
Number Name Number Name
$0 $zero Permanently 0 F24, 325 | B8, $t9 Temporary
1 Fat Assembler Temporary (reserved) $26, 327 | RO, Ek1 ggnel (reserved for
$2, 33 T, Tl Walue returned by asubroutine $23 Fep (3lobal Pointer
$4-37 || Fad-Fa? | Arguments to asubroutine $29 Fap Stack Pointer
Tetnporary
F2-F15 | BtO-Ft7 (not preserved across a function $30 tip Frame Fointer
call)
T16-$23 || $a0-Ga7 | ved reglsters 331 Ira Return Address

(preserved across a function call)

MIPS

 MIPS instructions (not complete)
— R-type: add, sub, and, or, slI,...
e add St0, St1, St2 #add $1, St2, put the result in $t0
— Memory: lw, sw, |b, sb.
* |w StO, 4(5t1) # read the data at the address of
St1+4, putitin StO
— Branch: begq, bne, ...

* beq $t0, St1, SOMEWHERE # if St0 is equal to St1, the
next instruction to be
executed is at the address

specified by SOEMWHERE
(PC+4+offset)
— Jump:j, jal, jr
* jSOMEWHERE # the next instruction should be at the address

specified by SOMEWHERE (The upper 4 bits from PC+4, the
lower 26 bits from the instruction, the last 2 bits 0)

— Immediate type:
* addi St0, St0, 4 # add St0 by 4 and putitin StO

MIPS Instruction Encoding

* Each MIPS instruction is exactly 32 bits

— R-type (register type)

— |-type (immediate type)

— J-type (jump type)

op

rs

rt

rd

shamt

funct

op

rs

rt

16 bit address or ¢

onstant

opP

26 bit address

MIPS Coding

* |f else. Assume fto h are in SsO to Ss4.
if (i==j) ¥ = g + h; else t = g - h;

bne %53, %54, Else: #go to Else if i <> J

add $s0, %$s1. %s2 #f = g + h

J Exit: #fioo to the end of the if-then-else block
Else:

sub $s0. %$s1. $s2 #f = g -h
Exit:

while loop

e Assume that i and k correspond to registers $s3
and Ss5 and base array save is in $s6

Loop: if (savelil 1= k) goto Exit;

while (savelil == k) oLt 1:
. L a4 psoto Loop:
i+=1; Exit :
Loop: s11 $tl, $s3, 2 # Temp reg $t1 = 4 *
add $tl1, $tl1, $s6 # $tl = address of save [1]
Tw $t0, 0($tl) # Temp reg $t0 = saveli]
bne $t0, $s5, Exit # go to Exit if savel[i] # k
addi $s3, $s3, 1 Fi=1+1
] Loop # go to Loop
Exit:

7/24/2013 week04-3.ppt 17

Problem

If St0 is holding 0, St1 is holding 1, what will be the value stored in $t2 after
the following instructions?

srl St1, St1, 1

bne StO, St1, L1

addi St2, St0, 1
L1: addi St2, St0, 2

(a) 1.
(b) 2.
(c) 3.
(d) None of the above.

Consider the following C code
if (a>Db)
a = A[b];
else
Ala] = b;

where A is an integer array. Which of
the following correctly implements
the code above, assume a is in StO,
b is in St1, and the starting address
of A'is in $s0? (bgt is “branch if
greater than.”)

bgt StO, St1, L1
add St2, St0, SsO
lw St1, 0(St2)
L1: add St2, St1, SsO
sw St0, 0(5t2)
Exit:

(b)

L1:

Exit:

(c)

L1:

Exit:

bgt St0, St1, L1
add St2, St0, SsO
sw St1, 0(5t2)

j Exit

add St2, St1, SsO
lw StO, 0(St2)

bgt StO, St1, L1
sll $t2, St0, 2
add St2, St2, SsO
lw St1, 0(St2)

j Exit

sll $t2, St1, 2
add St2, St2, SsO
sw St0, 0(St2)

(d) None of the above.

MIPS Function

* jal Funct:

— The next instruction will be at address specified
by Funct

— PC+4 will be stored in Sra
* jr Sra:

— The next instruction will be the one at address
equal to the content in Sra

* Calling a function is more like going to a
function and then come back

.data
array:

.word 12, 34, 67, 1, 45, 90, 11, 33,67, 19
msg_done:

.asciiz "done!\n"

text
.globl main

main:
la Ss7, array
li $sO, O #i
li Ss1, O #res
li $s6, 9

loop:
sl $t0, $s0, 2
add St0, St0, Ss7
lw $a0, 0($t0)
lw Sal, 4(5t0)
jal addfun
add Ss1, Ss1, SvO
addi $s0, $s0, 1
beq $s0, $s6, done
jloop

done:
li Sv0,4
la Sa0,msg_done
syscall
jrSra

addfun:
add Sv0, Sa0, Sal
jr Sra

Problem

Consider the following code segment. What will the code do?
li Sra, 0x04000000
jal f1
other instructions...
f1: addi Sra, -8
jr Sra

(a) It will enter a loop and can never come out.
(b) It will jump to the instruction located at address 0x04000000.

(c) It will call f1 once, then continue to execute other instructions following the jal f1
instruction.

(d) None of the above.

MIPS Calling Conventions

* MIPS assembly follows the following convention in
using registers

— $a0 - Sa3: four argument registers in which to pass
parameters

— SvO - Sv1: two value registers in which to return values

— Sra: one return address register to return to the point of
origin

MIPS stack

The stack in MIPS is a

memory space starting

at Ox7ffffffc and growing AL
DOWN.

The top of the stack is
always pointed by the
stack pointer, Ssp (the
address of the first
element space in the
stack should always be in
Ssp).

A function should save
the registers it touches
on the stack before
doing anything, and 400000
restore it before

returning.

10000000,,,

hex

l
!

Dynamic data

Static data

Reserved

Stack segment

Data segment

Text segment

MIPS Calling Conventions - more

* MIPS software divides 18 of the registers into two groups

— St0 - $t9: 10 temporary registers that are not preserved by the
callee on a procedure call

* These are caller-saved registers since the caller must save the ones it
is using

— Ss0 - Ss7: 8 saved registers that must be preserved on a
procedure call

* These are callee-saved registers since the callee must save the ones it
uses

* |n general,

— if there is a register that the callee may change, and the caller

still needs it after calling the callee, the caller should save it and
restore it before using it, such as Sra.

— If there is a register that the caller is not expected to change
after calling the callee, the callee should save it, such as $s0.

.globl

leaf_example:
addi
SuW
add
add
sub
add
1w
addi
Jjr

Saving SsO

leaf_example

$sp.
$s0,
$t0.
$t1.
$s0 .
$v0 .
$s0,

$sp.

$ra

$sp. —4
Q($sp)
$a0, %al
$a2. %as
$t0, $t1
$s0, $0
Q0 (Bsp)
$sp. 4

#make space on the stack for three items
#save register $s0

#register $t0 contains g + h

#register $t1 contains i + j

= (g + h) - (1 + j

#returns f

#restore register $s0

#ad just the stack before the return
#return to the calling program

MIPS interrupt

* For external interrupt, your code is executing, and if an
event happens that must be processed,

— The address of the instruction that is about to be
executed is saved into a special register called EPC

— PCis set to be 0x80000180, where the interrupt
handlers are located

— Then, after processing this interrupt, call “eret” to set
the value of the PC to the value stored in EPC

— Note the difference between an interrupt and a
function call. In a function call, the caller is aware of
going to another address. In interrupt, the “main
program” is not.

Supporting floating point. Load and
Store

* Load or store from a memory location
(pseudoinstruction). Just load the 32 bits into

the register.
— |.s SO, val
— 5.5 SO, val
 Load immediate number (pseudoinstruction)

—li.s $f0, 0.5

Arithmetic Instructions

abs.s SfO, Sf1
add.s SfO, Sf1, Sf2
sub.s S0, Sf1, Sf2
mul.s Sf0, Sf1, Sf2
div.s S0, Sf1, Sf2
neg.s S0, Sf1

Data move

* mov.s S$f0, Sfl
 mfcl St0O, SfO
 mtcl StO, SfO

Convert to integer and from integer

e cvt.s.w Sf0O, SO # convert the 32 bit in Sf0
currently representing an integer to float of

the same value
e cvt.w.s SfO, STO # the reverse

Comparison instructions

c.lt.s Sf0,Sf1 #set a flag in coprocessor 1if SfO
< $f1, else clear it. The flag will stay until set or
cleared next time

c.le.s Sf0,5f1 #Hset flag if SfO <= Sf1, else clear
It

bclt L1 # branch to L1 if the flag is set
bclf L1 # branch to L1 if the flagis O

Read the MIPS code and answer the following
guestions. What does function f1 do? What is the
value returned in SvO after the function is called?

main:

fun:

TunLd:

funlLl:

funlL2:

funL3:

data
word 11,2,33,4,5,6,2,10,7,2,

Lext
.globl main

la £ad, AR
1i %al, 10
1i a2, &
jal fun

1i %t8, 1000000

1i t9, -1

1i 0, O

211 *tl1, *td, 2

add $tl, %tl, a0
1w 5tl1, O(&5tl)

bgt 5tl1, ZaZ, funlLl
sub Ft2, FaZ, tl

j funL2

zub :t2, tl, Zal
bgt t2, £t8, funl3
ori %td, %td, 0

ori %t9, scd, O
addi %t0, 5t0, 1
bne 5t0, $al, funLd

ori $v0, 5tsS, 0O
jr &ra

Digital Logic, gates

* Basic Gate: Inverter

Truth Table

O

0
1

1
0

ter (limits conductivity)

GND _.__I o
W § o
Vcc

34

Abstractions in CS (gates)

e Basic Gate: NAND (Negated AND)

Truth Table

AIB Y A :>>—Y

001 B

0|11

1001 GNDFA FB Y
Vcc

35

Abstractions in CS (gates)

* Basic Gate: AND

Truth Table

A|B|Y
000
0/1/0 A

Y
111

Abstractions in CS (gates)

 Other Basic Gates: OR gate

Truth Table

B

™ >

>

R, R O O |>
N N =

= O = O

Abstractions in CS (gates)

e Other Basic Gates: XOR gate

Truth Table

B

o) >

= = 0O O >
O R R O

= O = O

Design flow

* Given any function, first get the truth table.

* Based on the truth table, use the Karnaugh
Map to simplify the circuit.

Karnaugh Map

Draw the map. Remember to make sure that the adjacent
rows/columns differ by only one bit.

According to the truth table, write 1 in the boxes.

Draw a circle around a rectangle with all 1s. The rectangle
must have size 2,4,8,16...Then, reduce the term by writing
down the variables that the values does not change. For
example, if there is a rectangle with two 1s representing
abc’ and abc, you write a term as ab.

A term may be covered in multiple circles.
The rectangle can wrap-around!

Use the minimum number of circles. A single "1’ is also
counted as a circle.

K-map

e F=a’bc’+a’bc+abc’+abc+a’b’c

ab
c\ 00 11 10
0 0o

Problem

» A digital circuit has three inputs (X2, X1, X0), and one
output O. The output is 1’ if the inputs interpreted
as an unsigned integer is an even number less than 5.
Which of the following implements the function?

a. O=("X2&~X0) | (X2&~X18&X0)
b. O=(“X2&“X0) | (~*X1&~X0)

c. O=("X2&~X1&~X0) | (*X2&X1&~X0) |
(X2&~X1&XO0)

d. None of the above.

MIPS ALU unit

Ainvert Operation
Binvert Carryln
- Y
a — 0 — \ ([_]_\
1
._
-)
I » Result
b q |
+ & 2
o0 —
1
Less > LB]
» Set
Yy ¥ Y I
Overflow = Qverflow

detection

32-bit ALU that Supports Set Less Than

Binvert Operation
Ainvert
Carryln
f—_ —_—
‘l L J J
al —= Carryln = Result]
b0 —= ALUO
- Less
CarryOut
I
Y.
al —= Carryln Result1
bl — AL
00— Less
CarryOut
‘_I— l ——————%
1 L} i
a2z —| Carryln = Result2
b2 —= ALUZ
0— Less
CarryOut

E: : : E'{Earr In :
: 1 ¥

all—s={ Carryln = Result31
b3l—= ALU31 Set
0— Less Overflow

Problems

The MIPS ALU is controlled by 4 bits as shown below. Consider the MIPS processor
supporting the R-type, lw, sw, and beq instructions. What should the control signal be in
case of the lw and peq instructions?

0000 AND

0001 OR

0010 add

0110 subtract

0111 set on less than
1100 NOR

(a) hw 0010, beg: 0010
(b) hw 0001, beg: 0000
(c) hw: 0010, beg: 0110

(d) None of the above.

Verilog Data Types

* A wire specifies a combinational signal.

* Areg (register) holds a value, which can vary
with time. A reg need not necessarily
correspond to an actual register in an
implementation, although it often will.

Constants

* Constants is represented by prefixing the
value with a decimal number specifying its
size in bits.

* For example:

— 4’b0100 specifies a 4-bit binary constant with the
value 4, as does 4'd4.

Values

* The possible values for a register or wire in
Verilog are
— 0 or 1, representing logical false or true

— X, representing unknown, the initial value given to
all registers and to any wire not connected to
something

— z, representing the high-impedance state for
tristate gates

Operators

* Verilog provides the full set of unary and
binary operators from C, including

— the arithmetic operators (+, —, *, /),
— the logical operators (&, |, ™),
— the comparison operators (==, 1=, >, <, <=, >=),

— the shift operators (<<, >>)

— Conditional operator (?, which is used in the form
condition ? exprl :expr2 and returns exprl if the
condition is true and expr2 if it is false).

Structure of a Verilog Program

A Verilog program is structured as a set of modules, which may
represent anything from a collection of logic gates to a complete
system.

A module specifies its input and output ports, which describe the
incoming and outgoing connections of a module.

A module may also declare additional variables.

The body of a module consists of
— initial constructs, which can initialize reg variables
— continuous assignments, which define only combinational logic

— always constructs, which can define either sequential or
combinational logic

— instances of other modules, which are used to implement the module
being defined

The half-adder. Example of continuous
assignments

module half_adder (A,B,Sum,Carry);
input A,B;

output Sum, Carry;

assign Sum = A 7 B;

assign Carry = A & B;

endmodule

e assign: continuous assignments. Any change in
the input is reflected immediately in the
output.

* Wires may be assigned values only with
continuous assignments.

One-bit Full Adder

module full_adder (A,B,Cin,Sum, Cout);
input A,B,Cin;
output Sum, Cout;

assighn Sum = (A& B & Cin) | (FA & ~B & Cin) | (~A & B & ~Cin) | (A & ~B & ~Cin);
assign Cout = (A & Cin) | (A & B) | (B & Cin);

endmodule

Four-bit Adder

module four_bit_adder (A,B,Cin,Sum, Cout);
input [3:0] A;
input [3:0] B;
input Cin;
output [3:0] Sum;
output Cout;

wire CO, C1, C2;

full_adder FA1(A[O], B[O], Cin, Sum[0], CO);
full_adder FA2(A[1], B[1], CO, Sum[1], C1);
(
(

full_adder FA3(A[2], B[2], C1, Sum[2], C2);
full_adder FA4(A[3], B[3], C2, Sum|[3], Cout);

endmodule

D-flip-flop

module Dff1 (D, clk, Q, Qbar);
input D, clk;
output reg Q, Qbar;

initial begin
Q=0;
Qbar =1;
end

always @(posedge clk) begin
#1
Q = D;
#1
Qbar =~Q;
end
endmodule

Delay

* Real circuits have delays caused by charging
and discharging.
* So, once the input to a gate changes, the

output will change after a delay, usually in the
order of nano seconds. An and gate:

A

output

Considerthe following circuit.

20 Q1 (22

[+ clk —1: clk —» clk

clk

And suppose the input X is

clk

At the time pointed by the arrow, what should Q2Q1G0 (notice the order) be?
(a) 011.
(b) 110]
(c) 000.

(d) Mone of the above.

Sequential Circuits

A three-bit counter.

* First, get the next state table. Then, generate
D2, D1, DO.

ME-IE_-E-
0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

FSM example — A sequence detector

One input X, and one output O.

X may change every clock cycle. The change
happens at the falling edge.

The circuit samples the input at every rising
edge of the clock. If the input is 1, consider as
read a 1, else read a 0.

O is 1 (for one clock cycle, from positive edge
to positive edge) if the last three bits read are
101.

SO

S3

4 states

S2

SO: got nothing.
The initial state.

S1: got 1.
S2: got 10.
S3: got 101.

Assign states

SO =00
S1=01
S2 =10
S3=11

Next State Function

R, P P P O O O O
P P O O » +» O O
~r O B O B O O
o r »r O O » O O
~ O P O B O - O

D1 = (Q0&~X) | (Q1&~Q0&X)
DO = X

The output function

* Clearly, 0 =Q1&Q0.

Please read the following Verilog module:

module statem (clk, O):
input clk;
output [1:0] O;

wire D1, DO, Q1, QO0, Qlbar, QObar;

azzsign DO = Q1 & QO0;
DfEfl1 CO0 (DO, eclk, Q0, QObar):;

assign D1 = ~Q0;
Dffl1 C1 (D1, clk, Q1, Qlbar):

azzign Of[1l] = Q1;
aszign O[0] = QO0;

endmodule

Given the D-flip-flops were in the 0 state at the beginning, which of the following statements is
true, if Q1Q0 are interpreted as a 2-bit unsigned integer number?

(a) Itis a two-bit counter, counting as "01230123 .7

(b} Itis not a counter, and generates sequence “0202020..."

(c) Itwill stay at state 0.

(d) Mone of the above.

Datapath only for R-type instructions

\
gy

Instrucsion [25:21) Read
PC oo 'llld register 1 Read . s
Instrucsion [2016) Resd data 1 S
S— Instruction register 2
[31:0) wrse Read >Aw ALU
R
Instruction | | ingsnuction [15:11)] register ding - “‘3
memory | 4 P
— VWrite
data Registors

Data path only for lw

Instruction [25:21) Resd
register 1 o oad

Instrucsion [20'16) data

-4 | >AUJ ALU
Wrie resul
registe’

o Write !

data Registers

instrucsion [15:0) 16 1/3—9\,3 e

Data path only for sw

Instruction [25:21) Read
register 1 o ad
Instrucsion [2016) Resd data 1
: s Saww
ALU
m“ 4 result
/
Reogisters
/\ N data
Instrucsion [15:0) 16 | R
P

Data path only for lw and sw

E-

— Instrucsion [25:21) .| Resd
PC -+ address %9511 Read P e S8
Instrucsion [20:16] Read data 1 =
e Instruction _I register 2 >
[31:0] wre Pead AU AL] psruey floed
o Wrie W , il
data Reglisters Deta
. —» Write memory
Instrucsion [15:0) 16 | sign | 32 y
) extend

/
L8

Datapath for Memory and R-type Instructions

—
¥

- Instrucsion [25:21] Read
| PC o+ sadress st Roag A
Instrucsion [20:16) Read data 1
_— Instruction _I o |recister2 >
131:0) M Read o AU Ay Addres Read 1
u e Wrie data 2 ‘ resut data M
Instruction | | Ingsnuction [15:11) | x | | register M -
memory | ¢ 1 v x
Wrie 0
& data Registers T. : Dsta
. - dm“” memory
instrucsion [15:0] 16 Sign 2]
extend

11/18/2007 7:39:44 PM week13-1.ppt

Datapath only for beg

Instrucsion [25:21)

@f“""‘"‘

&Y

Resd

registe’
Instrucsion [20:16) Read

“ogiste’

-

Instrucsion [15:0] 13 Q_z_

Datapath for R-type, memory, and

branch operations

— N\

Add

i 4

1B1:0)

P S—

L]

‘\

34

+ {
N !
3
iz
(-« wecg ©

Shift
oft 2
=l e
Instrucsion [25:21) Read
register 1 Read M
Instrucsion [20:16) Read data 1
.I - wwz Z2ero)=
o AL
M| | wree Read 0 ﬂ
Inssruction [15:11) | % | | register 03182 ™
" 1 u -/
N wike] e
“|data Registers L
instrucsion [15:0] 16 ',m. 2
o+ eatond

/
R

=)

oxcE

Problem

In addition to “beg,” MIPS also has the “bne” instruction. Suppose we already have a
MIFS processor supporting the R-type, lw, sw, and beq instructions. To support the bne
instruction, which of the following statements is true?

(a) A new data path must be created from one of the outputs of the register file to the
PC.

(b) It just needs a few more gates; no addition data path is needed.

(c) It can be totally supported by software based on beg and no additional hardware is
needed.

(d) Mone of the above.

Problem

Which of the following 1s not a reason that the MIPS processor cannot support instruction such
as add 5t0, 5tl, 5t2, 5t3,"thatis, adding$tl, £tz, £t3 and putthe result in 5to?

(a) Because the ALU cannot add three numbers.

(b) Because the register file can only read two registers.

(c) Because the instruction size (32 bits) is not large enough to specify these many registers for
this instruction.

(d) All of the above are comect reasons that the MIPS processor cannot support this instruction.

Problem 3 (20 points) Design a MIPS processor supporting only the B-type and the jreg rs, rt,
rd instruction. The jreqg r=, rr, rd instruction does the following: if rz==rt. the address of the next
instruction should be the content of r=, and the content of rd should be set to be the content of rt:
otherwise, nothing happens, go to the next instruction. For this problem, assume that the leading bit of
the opcode of all RE-type instructions is 0 and the leading bit of the opcode of jregis 1.

(a) (12 points) Show the data path of this processor, add 2-1 MUXes when necessary. Besides a
group of wires, please show clearly the indices of the bits.

(b} (8 points) The control signals include RegWrite, ALUCtrl. andthe signals to control the added
2-1 MUXes Show how to generate all control signals except ALUCtr1 by drawing down the
circuit.

Moter Fhis Instruction is my Invention ard § adeit 1§ seems fo e useless I practice. fuf
Iet’ 5 see IF you can implement It.

IN

ada—

-

I .Fhl!l
s — =
- m - m ""ﬁﬂ“f 1 nm | R i
Aaad data 1
Iretruction T register 2 \) w y
B10) wae Pead| Vel
Instruction "1 register data 2 osuR |
) — _—
memory | . .
e - wrae 5

Answer

Also, RegWrite = ~Instruct[31] | (Instruct[31] & zero)

.

Instruction 31

-

i

RegWrite

Instruction [25:21) Read
register 1 Read
mm:'e, Read data 1
register 2
Heac
| Write
Inswuction [15:11) [| register 9182
o Write
data Registers

AW Ay o)
° *’_

-~ v

s x

\1/

