
MIPS Assembly

Review

• A computer has processor, memory, and IO
devices.
– The processor stores values in registers, and modifies

values by sending them to the ALU.
– Memory is where the computer stores a large number

of values. Every byte can be accessed by specifying a
unique address. The address goes from 0 to 0xffffffff
in MIPS. In MIPS we mainly work with word which is 4
bytes.

• MIPS instructions learned:
– add, sub.
– lw, sw.

6/1/2013 CDA3100 3

Constant or Immediate Operands

• Many times we use a constant in an operation
– For example, i++, i--, i += 4, and so on

• Since constant operands occur frequently, we should
include constants inside arithmetic operations so
that they are much faster
– MIPS has an add instruction that allows one operand to be

a constant

– The constant must be in 16 bits, as a signed integer in 2’s
complement format

addi $s1, $s2, 100 # $s1 = $s2 + 100

6/1/2013 CDA3100 4

Logical Operations

• Often we need to operate on bit fields within
a word.

– Which allow us to pack and unpack bits into words
and perform logical operations such as logical and,
logical or, and logical negation

6/1/2013 CDA3100 5

Bit-wise AND

• Apply AND bit by bit
– The resulting bit is 1 if both of the input bits are 1 and zero

otherwise

• and $t2, $t0, $t1

– There is also a version of AND with an immediate

• andi $t2, $t1, 12

• The immediate is treated as an unsigned 16-bit number

– Ex:

• $t0 <- 00001100

• $t1 <- 00000110

• $t2 <- 00000100

6/1/2013 CDA3100 6

Bit-wise OR

• Apply OR bit by bit
– The resulting bit is 1 if at least one of the input bits is 1 and

zero otherwise

• or $t2, $t0, $t1

– There is also a version of OR with an immediate

• ori $t2, $t1, 12

• The immediate is treated as an unsigned 16-bit number

– Ex:

• $t0 <- 00001100

• $t1 <- 00000110

• $t2 <- 00001110

6/1/2013 CDA3100 7

Bit-wise XOR

• Apply XOR bit by bit
– The resulting bit is 1 if two bits are different

• xor $t2, $t0, $t1

– There is also a version of OR with an immediate

• xori $t2, $t1, 12

• The immediate is treated as an unsigned 16-bit number

– Ex:

• $t0 <- 00001100

• $t1 <- 00000110

• $t2 <- 00001010

6/1/2013 CDA3100 8

NOR
• Since NOT takes one operand and results in one operand, it is not included

in MIPS as an instruction

– Because in MIPS each arithmetic operation takes exactly three operands

– Instead, NOR is included

• The resulting bit is 0 if at least one of the input bits is 1

• nor $t2, $t0, $t1

– How to implement NOT using NOR?

• Using $zero as one of the input operands

• It is included in MIPS as a pseudoinstruction

– Ex1 (NOT):

• $t0 <- 00001100

• $t1 <- 00000000

• $t2 <- 11110011

– Ex2 (NOR):

• $t0 <- 00001100

• $t1 <- 00000110

• $t2 <- 11110001

Exercise 1

• How can we load an integer value (like 100)
into a register ($t0)?

Exercise 1

• How can we load an integer value (like 100)
into a register ($t0)?

– addi $t0, $zero, 100

– ori $t0, $zero, 80

– Which should we prefer?

• ori. Because it is simpler than add. Simpler means less
time, less power consumption.

