
MIPS assembly

Review

• We learned
– addi,

– and, andi, or, ori, xor, xori,

nor,

• An array is stored sequentially in the memory

• The instructions are also stored sequentially in
the memory. Executing the code is to load
then execute the instructions one by one,
unless we encounter a branch condition.

5/21/2013 CDA3100 3

Shifts
• Shift instructions move all the bits in a word to the left

or to the right

– Shift left logical (sll) move all the bits to the left by
the specified number of bits

• sll $t2, $t0, 2

– Shift right logical (srl) move all the bits to the right

• srl $t2, $t0, 2

– Filling the emptied bits with 0’s

• This includes srl with negative numbers (since you insert
0’s to the left of the number, your number will be
positive after the shift)

5/21/2013 CDA3100 4

Example 1

• Suppose register $s0 ($16) is 9ten

– What do we have in $t2 ($10) after

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1

5/21/2013 CDA3100 5

Example 1

• Suppose register $s0 ($16) is 9ten

– We have in $t2 ($10) after

• The value is 144ten = 9ten 24

– In general, shifting left by i bits gives the same
result as multiplying by 2i

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0

5/21/2013 CDA3100 6

Example 2

• Suppose register $s0 ($16) is 9ten

– What do we have in $t2 ($10) after

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1

5/21/2013 CDA3100 7

Example 2

• Suppose register $s0 ($16) is 9ten

– We have in $t2 ($10) after

• The value is NOT 9ten 228 noting that the number is a

signed number.

• Overflow happens this time

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0

5/21/2013 CDA3100 8

Example 3

• Suppose register $s0 ($16) is 99ten

– What do we have in $t2 ($10) after srl $t2, $s0, 4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 1

5/21/2013 CDA3100 9

Example 3

• Suppose register $s0 ($16) is 99ten

– We have in $t2 ($10) after srl $t2, $s0, 4

• The value is 6ten = 99ten / 24

– In general, shifting left by i bits gives the same
result as dividing by 2i

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0

5/21/2013 CDA3100 10

Example 4

• Suppose register $s0 ($16) is -9ten

– What do we have in $t2 ($10) after srl $t2, $s0, 4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1

5/21/2013 CDA3100 11

Example 4

• Suppose register $s0 ($16) is -9ten

– We have in $t2 ($10) after srl $t2, $s0, 4

• The value is NOT -9ten / 24 noting that the number is a
signed number.

• Even though it’s a negative number, 0’s are filled in
during shift

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1

5/21/2013 CDA3100 12

Instructions for Making Decisions
• A distinctive feature of programs is that they can

make different decisions based on the input data

5/21/2013 CDA3100 13

Instruction beq (branch if equal)
• To support decision making, MIPS has two conditional branch

instructions, similar to an “if” statement with a goto

– In C, it is equivalent to

– Note that L1 is a label and we are comparing values in register1 and

register2

• Label is an address of an instruction.
– Every address can be associated with a label, which is used

by the assembly program to specify the address
– Go to a label means that fetch that instruction from the

memory and execute it.

5/21/2013 CDA3100 14

Instruction bne
• Similarly, bne (branch not equal) means go to the

statement labeled with L1 if the value in register1
does not equal to the value in regster2

– Equivalent to

5/21/2013 CDA3100 15

Instruction j (jump)

• MIPS has also an unconditional branch,
equivalent to goto in C

– Jump to the instruction labeled with L1

5/21/2013 CDA3100 16

Compiling if-then-else
• Suppose variables f, g, h, i, and j are in

registers $s0 through $s4, how to implement
the following in MIPS?

5/21/2013 CDA3100 17

Compiling if-then-else
• Suppose variables f, g, h, i, and j are in

registers $s0 through $s4, how to implement
the following in MIPS?

5/21/2013 CDA3100 18

Compiling if-then-else
• Suppose variables f, g, h, i, and j are in

registers $s0 through $s4, how to implement
the following in MIPS?

5/21/2013 CDA3100 19

MIPS Assembly for if-then-else
• Now it is straightforward to translate the C program

into MIPS assembly

Exercise 1

• Suppose $t0 is storing 30, $t1 is storing 20. After the following
instructions, what will be the value in $t2?

sub $t2, $t0, $t1

srl $t2, $t2, 2

ori $t2, $t2, 10

(a) 8

(b)10

(c)18

(d) None of the above.

Exercise 2

• Suppose word array A stores 0,1,2,3,4,5,6,7,8,9, in this order. Assume the
starting address of A is in $s0. After the following instructions, what will be
the value in $t0?

 addi $s0, $s0, 32

 lw $t0, 4($s0)

 andi $t0, $t0, 1

(a) 0

(b) 8

(c) 9

(d) None of the above.

Exercise 3

• If $t0 is holding 17, $t1 is holding 8, what will be the value stored in $t2
after the following instructions?

 andi $t0, $t0, 3

 beq $t0, $0, L1

 addi $t0, $t0, 1

 L1: add $t2, $t0, $t1

(a) 10.

(b) 8.

(c) 2.

(d) None of the above.

Exercise 4

• Assume A is an integer array with 10 elements storing 0,1,2,3,4,5,6,7,8,9.
Assume the starting address of A is in $s0 and $t0 is holding 3. After the
running the following code, what will be the content of $t0?

 sll $t0, $t0, 3

 add $t0, $s0, $t0

 lw $t0, 0($t0)

 srl $t0, $t0, 1

(a) 3

(b) 1

(c) 0

(d) None of the above.

In Class Exercise

• If-Else

