
MIPS coding

Review

• Shifting

– Shift Left Logical (sll)

– Shift Right Logical (srl)

– Moves all of the bits to the left/right and fills in
gap with 0’s

– For most cases, equivalent to multiplying/dividing
by 2n where n is the number of bits being shifted

– Be careful of overflow and using srl on negative
numbers

Review

• Branching

– Branch If Equal (beq)

– Branch If Not Equal (bne)

– Jump (j)

– Changes point of execution:

• Conditionally only if clause is true for beq/bne
(otherwise, the next instruction is the one executed)

• Unconditionally for j

– Used to make if statements and loops in higher
level languages

In Class Exercise

• Write the MIPS assembly code for the following C code segment:

 If (A[1] < A[2]) {

 A[0] = A[1] & 5;

 }

 else {

 A[0] = A[2] & 5;

 }

• Assume the starting address of array A is stored in $s0. Use only the
instructions

• covered in class, i.e. add, addi, sub, or, ori, and, andi, xor, xori, nor, lw, sw,
srl, sll, beq,

• bne, j.

In Class Exercise – C Code

If (A[1] < A[2]) {

 A[0] = A[1] & 5;

}

else {

 A[0] = A[2] & 5;

}

In Class Exercise – Set up

ori $t0, $zero, 5 # Set up constant used in if

lw $t1, 4($s0) # Get value from A[1] and place in $t1

lw $t2, 8($s0) # Get value from A[2] and place in $t2

If (A[1] < A[2]) {

 A[0] = A[1] & 5;

}

else {

 A[0] = A[2] & 5;

}

sw $t0, 0($s0) # Store $t0 to A[0]

In Class Exercise – If Bodies

ori $t0, $zero, 5 # Set up constant used in if

lw $t1, 4($s0) # Get value from A[1] and place in $t1

lw $t2, 8($s0) # Get value from A[2] and place in $t2

If ($t1 < $t2) {

 and $t0, $t1, $t0 # And constant and A[1]

}

else {

 and $t0 $t2, $t0 # And constant and A[2]

}

sw $t0, 0($s0) # Store $t0 to A[0]

In Class Exercise –
Change Compare Operator

ori $t0, $zero, 5 # Set up constant used in if

lw $t1, 4($s0) # Get value from A[1] and place in $t1

lw $t2, 8($s0) # Get value from A[2] and place in $t2

sub $t3, $t1, $t2 # Negative if <, Zero/Positive if >=

srl $t3, $t3, 31 # Discard everything but the sign bit

If ($t3 != $zero) {

 and $t0, $t0, $t1 # And constant and A[1]

}

else {

 and $t0, $t0, $t2 # And constant and A[2]

}

sw $t0, 0($s0) # Store $t0 to A[0]

In Class Exercise –
Change If Statement to BEQ

 ori $t0, $zero, 5 # Set up constant used in if

 lw $t1, 4($s0) # Get value from A[1] and place in $t1

 lw $t2, 8($s0) # Get value from A[2] and place in $t2

 sub $t3, $t1, $t2 # Negative if <, Zero/Positive if >=

 srl $t3, $t3, 31 # Discard everything but the sign bit

 beq $t3, $zero, ELSE

 and $t0, $t0, $t1 # And constant and A[1]

 j EXIT # Skip over ELSE branch

ELSE:

 and $t0, $t0, $t2 # And constant and A[2]

EXIT:

 sw $t0, 0($s0) # Store $t0 to A[0]

In Class Exercise –
Convert to Exercise Given (<=)

 ori $t0, $zero, 5 # Set up constant used in if

 lw $t1, 4($s0) # Get value from A[1] and place in $t1

 lw $t2, 8($s0) # Get value from A[2] and place in $t2

 sub $t3, $t1, $t2 # Negative if <, Zero/Positive if >=

 bne $t3, $zero, REST # Skip if the two numbers are not equal

 and $t0, $t0, $t1 # Same as true branch below

 j EXIT # Skip over everything else

REST:

 srl $t3, $t3, 31 # Discard everything but the sign bit

 beq $t3, $zero, ELSE

 and $t0, $t0, $t1 # And constant and A[1]

 j EXIT # Skip over ELSE branch

ELSE:

 and $t0, $t0, $t2 # And constant and A[2]

EXIT:

 sw $t0, 0($s0) # Store $t0 to A[0]

slt, slti

• slt $t3, $t1, $t2

– set $t3 to be 1 if $t1 < $t2; else clear $t3
to be 0.

– “Set Less Than.”

• slti $t3, $t1, 100

– set $t3 to be 1 if $t1 < 100; else clear $t3
to be 0.

Using slt

 slt $t3, $t1, $t2

 beq $t3, $zero, ELSE

 andi $t0, $t1, 5

 j EXIT

ELSE:

 andi $t0, $t2, 5

EXIT:

Complete MIPS code

• The text segment in the source code usually starts with

 .text

 .globl main

 main:

 where ``main’’ is the label associated with the address of the first
instruction of the code.

• And the code usually ends with

 li $v0,10 # telling the simulator to stop

 syscall

• Comment with `#’

In Class Exercise

 .text

 .globl MAIN

MAIN:

 ori $t0, $zero, 5 # Set up constant used in if

 lw $t1, 4($s0) # Get value from A[1] and place in $t1

 lw $t2, 8($s0) # Get value from A[2] and place in $t2

 sub $t3, $t1, $t2 # Negative if <, Zero/Positive if >=

 bne $t3, $zero, REST # Skip if the two numbers are not equal

 and $t0, $t0, $t1 # Same as true branch below

 j EXIT # Skip over everything else

REST:

 srl $t3, $t3, 31 # Discard everything but the sign bit

 beq $t3, $zero, ELSE

 and $t0, $t0, $t1 # And constant and A[1]

 j EXIT # Skip over ELSE branch

ELSE:

 and $t0, $t0, $t2 # And constant and A[2]

EXIT:

 sw $t0, 0($s0) # Store $t0 to A[0]

 li $v0, 10 # Sets the syscall operation

 syscall # Exits the program

SPIM

• Run codes with SPIM. SPIM is a simulator.

– Use any editor to write the source file, save it as an .asm file.

– Run SPIM, load the source file.

– F10 to step through the code. Monitor how the registers change.

– F5 to run the code

– Can set breakpoints for debugging

• SPIM can be downloaded at

http://sourceforge.net/projects/spimsimulator/files/

• Lots of good references online, like

https://www.cs.tcd.ie/~waldroj/itral/spim_ref.html

http://sourceforge.net/projects/spimsimulator/files/
https://www.cs.tcd.ie/~waldroj/itral/spim_ref.html

Working with the simulator

• Can check

– How the program runs

– How the instructions are encoded, addressed

– How to monitor the change of the registers

– Later, how the memory is used to store data

Some Comments

• Being able to write if-else, we can have all
other fancy things like for loop, while loop….

• That is why we do not have an instruction for
the for loop or while loop, but we build it from
the if-else.

5/28/2013 week04-3.ppt 18

Compiling a while loop in C
• How to translate the following to MIPS assembly?

– We first translate into a C program using if and goto

5/28/2013 week04-3.ppt 19

Compiling a while loop in C
• Assume that i and k correspond to registers
$s3 and $s5 and starting address of array save
is in $s6

5/28/2013 week04-3.ppt 20

Compiling a while loop in C
• Assume that i and k correspond to registers
$s3 and $s5 and starting address of array save
is in $s6

5/28/2013 week04-3.ppt 21

While Loop
• How many instructions will be executed for the

following array save?

– Assume that k = 10 and i = 0 initially

– (6 loop lines * 9 loops) + 4 lines in last iteration

– = 58 lines

5/28/2013 week04-3.ppt 22

Optimized

• How many instructions now?
– Assume k = 10 and i = 0 initially

– 4 preloop lines + (4 loop lines * 9 loop iterations) + 4 lines in last
iteration

– = 44 lines

The loop code

 .data

save:.word 10, 10, 10, 10, 10, 11, 12,

 .text

 .globl main

main:

 li $s3, 0

 li $s5, 10

 la $s6, save

Loop:

 sll $t1, $s3, 2

 add $t1, $t1, $s6

 lw $t0, 0($t1)

 bne $t0, $s5, Exit

 addi $s3, $s3, 1

 j Loop

Exit:

done:

 li $v0, 10 # these two lines are to tell the simulator to stop

 syscall

Data segment and code segment

• The code has a data segment and a code (text) segment.

• The beginning of the data segment in the assembly source code is
indicated as

 .data

 and followed by several declarations such as

– A: .word 0,1,2,3,4,5,6,7,8,9

 meaning an array of words whose starting address is associated with
label ``A.’’

– Several notes:

• It will allocate continuous spaces in the memory for the data

• .word means everything is 4 bytes

• save: is a label associated with the address of the first byte
allocated. Like the label for the instructions, label for an address is
also an address.

