
MIPS Coding Continued

Exercise 1

5/30/2013 week04-3.ppt 2

• Suppose we have three arrays, A, B, C, all of size 10. Now we want to
set C[i] = min(A[i], B[i]) for all 0<= i <= 9.

Exercise 1

5/30/2013 week04-3.ppt 3

• Suppose we have three arrays, A, B, C, all of size 10. Now we want to
set C[i] = min(A[i], B[i]) for all 0<= i <= 9.

• First, we need a loop to walk through the elements (done before)

• Second, we need to be able to read the elements (done before)

• Third, we need to be able to compare two numbers (done before)

• Fourth, we need to write back to the memory (easy)

 .data

A: .word 12, 34, 67, 1, 45, 90, 11, 33, 67, 19

B: .word 90, 2, 93, 66, 8, 120, 121, 11, 33, 9

C: .space 40

 .text

 .globl main

main:

done:

 li $v0,10

 syscall

 .data

A: .word 12, 34, 67, 1, 45, 90, 11, 33, 67, 19

B: .word 90, 2, 93, 66, 8, 120, 121, 11, 33, 9

C: .space 40

 .text

 .globl main

main:

 la $s0, A # array A

 la $s1, B # array B

 la $s2, C # array C

 li $s3, 10 # length of the arrays

 li $t0, 0 # using $t0 as I

done:

 li $v0,10

 syscall

 .data

A: .word 12, 34, 67, 1, 45, 90, 11, 33, 67, 19

B: .word 90, 2, 93, 66, 8, 120, 121, 11, 33, 9

C: .space 40

 .text

 .globl main

main:

 la $s0, A # array A

 la $s1, B # array B

 la $s2, C # array C

 li $s3, 10 # length of the arrays

 li $t0, 0 # using $t0 as I

LOOP:

 addi $t0, $t0, 1 # i ++

 bne $t0, $s3, LOOP # go back if not yet 10 times

done:

 li $v0,10

 syscall

 .data

A: .word 12, 34, 67, 1, 45, 90, 11, 33, 67, 19

B: .word 90, 2, 93, 66, 8, 120, 121, 11, 33, 9

C: .space 40

 .text

 .globl main

main:

 la $s0, A # array A

 la $s1, B # array B

 la $s2, C # array C

 li $s3, 10 # length of the arrays

 li $t0, 0 # using $t0 as I

LOOP:

 sll $t4, $t0, 2 # $t4 = i * 4

 add $t5, $t4,$s0 # $t5 will have the address of A[i]

 lw $t1, 0($t5) # $t1 has A[i]

 add $t6, $t4,$s1 # $t6 will have the address of B[i]

 lw $t2, 0($t6) # $t2 has B[i]

 addi $t0, $t0, 1 # i ++

 bne $t0, $s3, LOOP # go back if not yet 10 times

done:

 li $v0,10

 syscall

 .data

A: .word 12, 34, 67, 1, 45, 90, 11, 33, 67, 19

B: .word 90, 2, 93, 66, 8, 120, 121, 11, 33, 9

C: .space 40

 .text

 .globl main

main:

 la $s0, A # array A

 la $s1, B # array B

 la $s2, C # array C

 li $s3, 10 # length of the arrays

 li $t0, 0 # using $t0 as I

LOOP:

 sll $t4, $t0, 2 # $t4 = i * 4

 add $t5, $t4,$s0 # $t5 will have the address of A[i]

 lw $t1, 0($t5) # $t1 has A[i]

 add $t6, $t4,$s1 # $t6 will have the address of B[i]

 lw $t2, 0($t6) # $t2 has B[i]

 add $t6, $t4, $s2 # now $t6 has the address of C[i]

 sw $t8, 0($t6) # now C[i] has the minimum of A[i] and B[i]

 addi $t0, $t0, 1 # i ++

 bne $t0, $s3, LOOP # go back if not yet 10 times

done:

 li $v0,10

 syscall

 .data

A: .word 12, 34, 67, 1, 45, 90, 11, 33, 67, 19

B: .word 90, 2, 93, 66, 8, 120, 121, 11, 33, 9

C: .space 40

 .text

 .globl main

main:

 la $s0, A # array A

 la $s1, B # array B

 la $s2, C # array C

 li $s3, 10 # length of the arrays

 li $t0, 0 # using $t0 as I

LOOP:

 sll $t4, $t0, 2 # $t4 = i * 4

 add $t5, $t4,$s0 # $t5 will have the address of A[i]

 lw $t1, 0($t5) # $t1 has A[i]

 add $t6, $t4,$s1 # $t6 will have the address of B[i]

 lw $t2, 0($t6) # $t2 has B[i]

 slt $t5, $t1, $t2 # set $t5 to be 1 if A[i] < B[i]

 beq $t5, $0, L1 # if $t5 == 0, goto L1. in this case, A[i] >= B[i]

 ori $t8, $t1, 0 # setting $t8 to be A[i]

 j L2 # always remember to jump in an if else!

L1:

 ori $t8, $t2, 0 # setting $t8 to be B[i]

L2:

 add $t6, $t4, $s2 # now $t6 has the address of C[i]

 sw $t8, 0($t6) # now C[i] has the minimum of A[i] and B[i]

 addi $t0, $t0, 1 # i ++

 bne $t0, $s3, LOOP # go back if not yet 10 times

done:

 li $v0,10

 syscall

5/30/2013 CDA3100 10

Representing Instructions in Computers

• Note that computers only have 0’s and 1’s

• Before we can load MIPS instructions into memory,
they need to be translated into machine instructions,
which consist of only 0’s and 1’s

– In other words, we need to encode or represent
instructions

– The symbolic representation of machine instructions is
called assembly language

– The binary representation of instructions is called machine
language
• A sequence of instructions in binary form is called machine code

5/30/2013 CDA3100 11

Example

5/30/2013 CDA3100 12

MIPS Instruction Encoding
• Each MIPS instruction is exactly 32 bits

– R-type (register type)

– I-type (immediate type)

– J-type (jump type)

 op rs rt rd shamt funct

 op rs rt 16 bit address or constant

 op 26 bit address

5/30/2013 CDA3100 13

R-Type Encoding

31

opcode rs rt rd

26 25 21 20 16 15 11 10 6 5 0

shamt funct

0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
31

opcode rs rt rd

26 25 21 20 16 15 11 10 6 5 0

shamt funct

 add $4, $3, $2
rt

rs

rd

0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Encoding = 0x00622020

5/30/2013 CDA3100 14

R-Type Encoding

31

opcode rs rt rd

26 25 21 20 16 15 11 10 6 5 0

shamt funct

0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
31

opcode rs rt rd

26 25 21 20 16 15 11 10 6 5 0

shamt funct

 sub $4, $3, $2
rt

rs

rd

0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

Encoding = 0x00622023

5/30/2013 CDA3100 15

R-Type Encoding

31

opcode rs rt rd

26 25 21 20 16 15 11 10 6 5 0

shamt funct

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
31

opcode rs rt rd

26 25 21 20 16 15 11 10 6 5 0

shamt funct

 sll $4, $3, 2
shamt

rt

rd

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Encoding = 0x00032080

5/30/2013 CDA3100 16

I-type Encoding
31

opcode rs rt Immediate Value

26 25 21 20 16 15 0

 lw $5, 3000($2)

Immediate

rs

rt

0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0

Encoding = 0x8C450BB8

0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0
31

opcode rs rt

26 25 21 20 16 15 0

Immediate Value

5/30/2013 CDA3100 17

I-type Encoding
31

opcode rs rt Immediate Value

26 25 21 20 16 15 0

 sw $5, 3000($2)

Immediate

rs

rt

1 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0

Encoding = 0xAC450BB8

1 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 0
31

opcode rs rt

26 25 21 20 16 15 0

Immediate Value

5/30/2013 CDA3100 18

I-type Encoding
31

opcode rs rt Immediate Value

26 25 21 20 16 15 0

 addi $s0, $s0, 95

Immediate

rs

rt

1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0

Encoding = 0x2210005F

1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0
31

opcode rs rt

26 25 21 20 16 15 0

Immediate Value

J-type Encoding

31

opcode Jump Address

26 25 0

 j 0x0040007c Jump Address

0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0

Encoding = 0x0810001F

opcode

 j 0x0040007c 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
31

Jump Address

26 25 0

0x0040007c: the address of the instruction to jump to.
When encoding it, take the bit 2 to bit 27 (you can also
think of it as doing a srl by 2 bits on the address).

5/30/2013 week04-3.ppt 20

How to Encode Branch Instructions
• To encode these branch instructions, we first

need to figure out the value for the
associated label
– This will be done by the assembler

– Note that the MIPS has the alignment
restriction, which means all the labels will be a
multiple of 4

– To increase the range, the address divided by 4 is
actually encoded
• In other words, the address is in terms of words (32

bits), rather than bytes

5/30/2013 week04-3.ppt 21

Encoding Conditional Branch Instructions

• It branches the number of the instructions
specified by the offset if register rs equals to
register rt

– In the stored-program concept, we implicitly need a

register to hold the address of the current instruction
being executed
• Which is called program counter (PC) (should be called

instruction address register)

– What is the value of PC after we finish executing the
current instruction?

5/30/2013 week04-3.ppt 22

Encoding Conditional Branch Instructions

• PC-relative addressing

– The offset of conditional branch instructions is
relative to PC + 4

– Since all MIPS instructions are 4 bytes long, the
offset refers to the number of words to the next
instruction instead of the number of bytes

5/30/2013 week04-3.ppt 23

Encoding bne
31

opcode rs rt Immediate Value

26 25 21 20 16 15 0

 bne $19, $20, Else

Label/Offset

rt

rs

0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Encoding = 0x16740002

0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
31

opcode rs rt

26 25 21 20 16 15 0

Immediate Value

