
MIPS Functions

Common Problems on Homework

• 1.3: Convert -3000ten to binary in 8bit, 16bit,
and 32bit

– Even though it overflows with 8bits, there is
plenty of room with 16 and 32 bit.

Common Problems on Homework

• 2.3: Convert
01111111111111111111111110111111two to
decimal

– It says that it is in two’s complement but that is
just a standard to distinguish positive numbers
from negative. You don’t have to do two’s
complement conversion. That’s used to see what
the decimal equivalent is or to convert an
unsigned number to a signed one

Common Problems on Homework

• 3.3: Convert -0.3ten to a floating-point binary
number

– In single precision, you would get 0xBE999999 and
not 0xBE99999A because when you run out of
hardware, instead of rounding, you truncate the
number.

In Class Exercise 2

Write the MIPS assembly code to do insertion sort (shown by the following C

code segment). You may use any MIPS instructions that you’ve learned inside or

outside of class.

int main() {

 int i, j, v;

 int A[10] = {6, 3, 7, 2, 0, 9, 1, 8, 4, 5};

 for (i = 1; i < 10; ++i) {

 v = A[i];

 for (j = i - 1; j >= 0 && A[j] >= v; --j) {

 A[j+1] = A[j];

 }

 A[j+ 1] = v;

 }

 return 0;

}

In Class Exercise 2 Solution
 .data

A: .word 6, 3, 7, 2, 0, 9, 1, 8, 4, 5

 .text

 .globl main

main: la $s0, A # Array A

 li $s1, 10 # Length of A

 li $s2, 1 # i

 li $s3, 0 # j

 li $s4, 0 # v

 li $t0, 0 # Address of A[i]

 li $t1, 0 # Address of A[j]

 li $t2, 0 # Value of A[i]

 li $t3, 0 # Value of A[j]

Exit: li $v0, 10 # Load exit operation

 syscall # Exit

Set up program

Initialize ‘variables’

In Class Exercise 2 Solution
 .data

A: .word 6, 3, 7, 2, 0, 9, 1, 8, 4, 5

 .text

 .globl main

main: la $s0, A # Array A

 li $s1, 10 # Length of A

 li $s2, 1 # i

 li $s3, 0 # j

 li $s4, 0 # v

 li $t0, 0 # Address of A[i]

 li $t1, 0 # Address of A[j]

 li $t2, 0 # Value of A[i]

 li $t3, 0 # Value of A[j]

Loop1:

 addi $s2, $s2, 1 # ++i

 blt $s2, $s1, Loop1 # Loop while i < 10

Exit: li $v0, 10 # Load exit operation

 syscall # Exit

Set up outer loop

In Class Exercise 2 Solution
 .data

A: .word 6, 3, 7, 2, 0, 9, 1, 8, 4, 5

 .text

 .globl main

main: la $s0, A # Array A

 li $s1, 10 # Length of A

 li $s2, 1 # i

 li $s3, 0 # j

 li $s4, 0 # v

 li $t0, 0 # Address of A[i]

 li $t1, 0 # Address of A[j]

 li $t2, 0 # Value of A[i]

 li $t3, 0 # Value of A[j]

Loop1:

 addi $s3, $s2, -1 # j = i - 1

Loop2:

 addi $s3, $s3, -1 # --j

 bge $s3, $0, Loop2 # Loop if j >= 0

 addi $s2, $s2, 1 # ++i

 blt $s2, $s1, Loop1 # Loop while i < 10

Exit: li $v0, 10 # Load exit operation

 syscall # Exit

Set up Inner Loop

In Class Exercise 2 Solution
 .data

A: .word 6, 3, 7, 2, 0, 9, 1, 8, 4, 5

 .text

 .globl main

main: la $s0, A # Array A

 li $s1, 10 # Length of A

 li $s2, 1 # i

 li $s3, 0 # j

 li $s4, 0 # v

 li $t0, 0 # Address of A[i]

 li $t1, 0 # Address of A[j]

 li $t2, 0 # Value of A[i]

 li $t3, 0 # Value of A[j]

Loop1: sll $t0, $s2, 2 # Convert i to memory access

 add $t0, $t0, $s0 # Add offset i to base A

 lw $s4, 0($t0) # v = A[i]

 addi $s3, $s2, -1 # j = i - 1

Loop2:

 addi $s3, $s3, -1 # --j

 bge $s3, $0, Loop2 # Loop if j >= 0

 addi $s2, $s2, 1 # ++i

 blt $s2, $s1, Loop1 # Loop while i < 10

Exit: li $v0, 10 # Load exit operation

 syscall # Exit

Load A[i] into v

In Class Exercise 2 Solution
 .data

A: .word 6, 3, 7, 2, 0, 9, 1, 8, 4, 5

 .text

 .globl main

main: la $s0, A # Array A

 li $s1, 10 # Length of A

 li $s2, 1 # i

 li $s3, 0 # j

 li $s4, 0 # v

 li $t0, 0 # Address of A[i]

 li $t1, 0 # Address of A[j]

 li $t2, 0 # Value of A[i]

 li $t3, 0 # Value of A[j]

Loop1: sll $t0, $s2, 2 # Convert i to memory access

 add $t0, $t0, $s0 # Add offset i to base A

 lw $s4, 0($t0) # v = A[i]

 addi $s3, $s2, -1 # j = i - 1

 sll $t1, $s3, 2 # Convert j to memory access

 add $t1, $t1, $s0 # Add offset j to base A

Loop2: lw $t3, 0($t1) # load A[j]

 addi $s3, $s3, -1 # --j

 addi $t1, $t1, -4 # Keep memory access consistent with j

 bge $s3, $0, Loop2 # Loop if j >= 0

 addi $s2, $s2, 1 # ++i

 blt $s2, $s1, Loop1 # Loop while i < 10

Exit: li $v0, 10 # Load exit operation

 syscall # Exit

Load A[j]

In Class Exercise 2 Solution
 .data

A: .word 6, 3, 7, 2, 0, 9, 1, 8, 4, 5

 .text

 .globl main

main: la $s0, A # Array A

 li $s1, 10 # Length of A

 li $s2, 1 # i

 li $s3, 0 # j

 li $s4, 0 # v

 li $t0, 0 # Address of A[i]

 li $t1, 0 # Address of A[j]

 li $t2, 0 # Value of A[i]

 li $t3, 0 # Value of A[j]

Loop1: sll $t0, $s2, 2 # Convert i to memory access

 add $t0, $t0, $s0 # Add offset i to base A

 lw $s4, 0($t0) # v = A[i]

 addi $s3, $s2, -1 # j = i - 1

 sll $t1, $s3, 2 # Convert j to memory access

 add $t1, $t1, $s0 # Add offset j to base A

Loop2: lw $t3, 0($t1) # load A[j]

 blt $t3, $s4, Break # Continue looping if A[j] >= v

 addi $s3, $s3, -1 # --j

 addi $t1, $t1, -4 # Keep memory access consistent with j

 bge $s3, $0, Loop2 # Loop if j >= 0

Break:

 addi $s2, $s2, 1 # ++i

 blt $s2, $s1, Loop1 # Loop while i < 10

Exit: li $v0, 10 # Load exit operation

 syscall # Exit

Add second

condition to inner

loop

In Class Exercise 2 Solution
 .data

A: .word 6, 3, 7, 2, 0, 9, 1, 8, 4, 5

 .text

 .globl main

main: la $s0, A # Array A

 li $s1, 10 # Length of A

 li $s2, 1 # i

 li $s3, 0 # j

 li $s4, 0 # v

 li $t0, 0 # Address of A[i]

 li $t1, 0 # Address of A[j]

 li $t2, 0 # Value of A[i]

 li $t3, 0 # Value of A[j]

Loop1: sll $t0, $s2, 2 # Convert i to memory access

 add $t0, $t0, $s0 # Add offset i to base A

 lw $s4, 0($t0) # v = A[i]

 addi $s3, $s2, -1 # j = i - 1

 sll $t1, $s3, 2 # Convert j to memory access

 add $t1, $t1, $s0 # Add offset j to base A

Loop2: lw $t3, 0($t1) # load A[j]

 blt $t3, $s4, Break # Continue looping if A[j] >= v

 sw $t3, 4($t1) # A[j+1] = A[j]

 addi $s3, $s3, -1 # --j

 addi $t1, $t1, -4 # Keep memory access consistent with j

 bge $s3, $0, Loop2 # Loop if j >= 0

Break: sw $s4, 4($t1) # A[j+1] = v

 addi $s2, $s2, 1 # ++i

 blt $s2, $s1, Loop1 # Loop while i < 10

Exit: li $v0, 10 # Load exit operation

 syscall # Exit

Update A[j+1]

6/4/2013 week04-3.ppt 13

Procedures and Functions
• We programmers use procedures and

functions to structure and organize programs

– To make them easier to understand

– To allow code to be reused

Function

• A function carries out a well-defined
functionality, that can be called and produce
the result to be used by the caller.

Functions

• A function is a consecutive piece of code stored in
the memory.

• To invoke (or call) a function, we must go to that
piece of code. Then it does certain things, and get
the result we need.

• What do we know about going to a piece of code?

Functions

• So, we can call a function by

 j Function

• And, the function code will do something we
need.

• Problem: how to come back to the caller?

Two Interesting Instructions and One
Interesting Register

• jal: jump and link
– jal L1:

– does TWO things
1. Goto L1. (the next instruction to be executed is at address

L1)
2. Save the address of the next instruction in $ra. $ra is the

interesting register that stores the return address

• jr $ra

– Does ONE thing. Goto the instruction whose address
is the value stored in $ra.

• This is ALL we need to support function calls in
MIPS!

Functions

• The procedure

a

a

a

a

a

a

a a add $t0, $t1, $t0

a sub $t2, $t1, $t0

a jal Function

a add $t0, $t1, $t0

a sub $t2, $t1, $t0

a jr $ra

.

.

.

Function:

a sll $t0, $t0, 2

A simple function

 .data
A: .word 12, 34, 67, 1, 45, 90, 11, 33, 67, 19

 .text
 .globl main
main:
 la $s7, A
 li $s0, 0 #i
 li $s1, 0 #res
 li $s6, 9

loop:
 sll $t0, $s0, 2
 add $t0, $t0, $s7
 lw $a0, 0($t0)
 lw $a1, 4($t0)
 jal addfun
 add $s1, $s1, $v0
 addi $s0, $s0, 2
 bgt $s0, $s6, done
 j loop

done:
 li $v0,10
 syscall

addfun:
 add $v0, $a0, $a1
 jr $ra

Key things to keep in mind

1. A function is just a segment of code stored sequentially
in the memory. To call a function is just to go there.

2. The name of a function in MIPS is JUST A LABEL or
JUST AN ADDRESS.

3. We cannot simply use “j addfun” to go to addfun,
because we do not know where come back. Therefore,
we need to store the address of the instruction that
should be executed after going to the function
somewhere, and in MIPS, it is $ra.

4. At the end of a function, we write “jr $ra”, to go back.

6/4/2013 week04-3.ppt 22

MIPS Calling Conventions

• MIPS assembly follows the following convention in
using registers

– $a0 - $a3: four argument registers in which to pass
parameters

– $v0 - $v1: two value registers in which to return values

– $ra: one return address register to return to the point of
origin

MIPS Conventions

• Quite often, our function needs to use some
registers to do dome calculation. So we will
modify the values of them.

• We can use $t0-$t9 freely inside a function,
because the caller does not expect the values
inside $t0-$t9 to stay the same after the
function call.

• But, the caller do expect the values in $s0 to
$s7 to be the same after a function call.

MIPS Conventions

• So, just try to avoid using $s0 and $s7 inside a
function whenever possible.

• But what if do need it? Such occasions will
arise…

Stack

• So, if we do have to use $s0
- $s7, we MUST save it
somewhere before
entering the main part of
the function, and restore it
before you return (before
we execute “jr $ra”).

• In MIPS, we save them in
the stack.

• Stack is a part in the
memory allocated for
functions. It starts at
0x7ffffffc and grows down
as we add more stuffs to it.

• Stack is “first in last out.”

$sp

• The top address of the stack, the address of
the first word that is storing value, is (should
be) always be stored in $sp.

• So, adding a word into the stack (pushing a
word onto the stack) is a two-step thing,
because you have to maintain the correctness
of $sp:
– addi $sp, $sp, -4

– sw $s0, 0($sp)

Suppose we want to

Stack and $sp

• Suppose we want to store a/2 in $s0.

– How do we get a/2?

• At the beginning, we do
– addi $sp, $sp, -4

– sw $s0, 0($sp)

• At the end, we do
– lw $s0, 0($sp)

– addi $sp, $sp, 4

 .data
A: .word 12, 34, 67, 1, 45, 90, 11, 33, 67, 19

 .text
 .globl main
main:
 la $s7, A
 li $s0, 0 #i
 li $s1, 0 #res
 li $s6, 9

loop:
 sll $t0, $s0, 2
 add $t0, $t0, $s7
 lw $a0, 0($t0)
 lw $a1, 4($t0)
 jal weirdfun
 add $s1, $s1, $v0
 addi $s0, $s0, 2
 bgt $s0, $s6, done
 j loop

done:
 li $v0,10
 syscall

weirdfun:
 addi $sp, $sp, -4
 sw $s0, 0($sp)

 srl $s0, $a0, 1
 add $t0, $a0, $a0
 add $t0, $t0, $a1
 sub $t0, $t0, $s0

 ori $v0, $t0, 0

 lw $s0, 0($sp)
 addi $sp, $sp, 4

 jr $ra

Function calls inside a function

• What if we need to call another function
inside a function? Will this work?

twofun:

 addi $sp, $sp, -4

 sw $s0, 0($sp)

 jal addfun

 srl $s0, $a0, 1

 sub $v0, $v0, $s0

 lw $s0, 0($sp)

 addi $sp, $sp, 4

 jr $ra

Function calls inside a function

• The problem is that
the value of $ra is
changed whenever
you use jal somelabel.

• How to deal with it?

twofun:

 addi $sp, $sp, -4

 sw $s0, 0($sp)

 jal addfun

 srl $s0, $a0, 1

 sub $v0, $v0, $s0

 lw $s0, 0($sp)

 addi $sp, $sp, 4

 jr $ra

The working versions

twofun1:

 addi $sp, $sp, -4

 sw $s0, 0($sp)

 addi $sp, $sp, -4

 sw $ra, 0($sp)

 jal addfun

 srl $s0, $a0, 1

 sub $v0, $v0, $s0,

 lw $ra, 0($sp)

 addi $sp, $sp, 4

 lw $s0, 0($sp)

 addi $sp, $sp, 4

 jr $ra

twofun2:

 addi $sp, $sp, -8

 sw $s0, 4($sp)

 sw $ra, 0($sp)

 jal addfun

 srl $s0, $a0, 1

 sub $v0, $v0, $s0,

 lw $ra, 0($sp)

 lw $s0, 4($sp)

 addi $sp, $sp, 8

 jr $ra

Saving registers

• In case of nested function calls, before calling a
function, to be safe, the caller should
– save $t0-$t9

– save $a0-$a3

If such registers are needed later. and

– save $ra

Because $ra is going to be needed later and it will be
changed

• The callee should
– save $s0-s7

