
MIPS Function Continued

a

a

a

a

a

a

a

Review

• Function
– A consecutive piece of code doing a

specific thing

– To go to the function, use jal
Function, which does two things:
• goes to the code starting at the address

associated with label Function,

• stores the address of the instruction
immediately following the jal instruction into
$ra.

– To return from the function, use jr
$ra, which takes the code back to the
instruction following the jal instruction.

a add $t0, $t1, $t0

a sub $t2, $t1, $t0

a jal Function

a add $t0, $t1, $t0

a sub $t2, $t1, $t0

a jr $ra

.

.

.

Function:

a sll $t0, $t0, 2

Review

• Stack
– A piece of memory

– Last in first out

– Use $sp to keep track of the first used element on the stack

6/5/2013 week04-3.ppt 4

Character and String Operations
• Characters are encoded as 0’s and 1’s using ASCII

most commonly

– American Standard Code for Information Interchange

– Each character is represented using 8 bits (or a byte)

– If stored within an integer, the 8 bit character portion will
be located within the lowermost ordered bits; this allows
you to optionally store characters within integers

• MIPS provides instructions to move bytes
– Load byte (lb) loads a byte to the rightmost 8 bits of a

register

– Store byte (sb) write the rightmost 8 bits of a register to
memory

6/5/2013 week04-3.ppt 5

SPIM syscalls
• Syscalls are operations defined within the assembler (not

the processor)

• The syscall operation is dependent on the value in $v0

• The parameters to the operation are in $a0-$a3 (except for
floating point numbers and then it is $f12)

• Read operations store the value back in $v0 (again except
for floating point numbers and then it is $f0)

SPIM syscalls
Integers

 li $v0,1 # print an integer in $a0

 li $a0,100

 syscall

 li $v0,5 # read an integer into $v0

 syscall

SPIM syscalls
Characters

 li $v0,11 # print a character in $a0

 li $a0,’a’

 syscall

 li $v0,12 # read a character into $v0

 syscall

SPIM syscalls
Strings

 li $v0,4 # print an ASCIIZ string at $a0

 la $a0,msg_hello

 syscall

 Don’t worry about reading in strings

SPIM syscalls
Floating Point

 li $v0,2 # print a single precision

 li $f12,5.5 # floating point number in $f12

 syscall

 li $v0,3 # print a double precision

 li $f12,5.5 # floating point number in $f12

 syscall

 li $v0,6 # read a single precision

 syscall # floating point number into $f0

 li $v0,7 # read a double precision

 syscall # floating point number into $f0

SPIM syscalls
Others

 li $v0,10 #exit

 syscall

6/5/2013 week04-3.ppt 11

String Copy Procedure

 .data

msg_hello:

 .asciiz "Hello\n"

msg_empty:

 .space 400

 .text

 .globl main

main:

done:

 li $v0,4

 la $a0,msg_hello

 syscall

 li $v0,4

 la $a0,msg_empty

 syscall

 la $a0,msg_empty #dst

 la $a1,msg_hello #src

 jal strcpy

 li $v0,4

 la $a0,msg_empty

 syscall

 li $v0,10 #exit

 syscall

strcpy:

 lb $t0, 0($a1)

 sb $t0, 0($a0)

 addi $a0, $a0, 1

 addi $a1, $a1, 1

 bne $t0, $0, strcpy

 jr $ra

Stack

• Key things to keep in mind:

– Stack is a software concept – last in first out, that’s
it.

– In MIPS, you implement the stack by yourself by
keeping $sp always pointing to the top element
on the stack

– Stack can be used in functions to save register
values, and is the standard approach to save
register values. But

• You can also use stack for other purposes

• This is not the only way to save register values.

 .data

msg: .asciiz "hello

world"

endl: .asciiz "\n"

 .text

 .globl main

main:

 addi $sp,$sp,-1

 sb $0,0($sp)

 la $t1, msg

L0:

 lb $t0,0($t1)

 beq $t0,$0, L1

 addi $sp,$sp,-1

 sb $t0,0($sp)

 addi $t1,$t1,1

 j L0

L1:

 la $t1,msg

L2:

 lb $t0,0($sp)

 addi $sp,$sp,1

 sb $t0,0($t1)

 beq $t0, $0, L3

 addi $t1,$t1,1

 j L2

L3:

 la $a0,msg

 li $v0,4

 syscall

 la $a0,endl

 li $v0,4

 syscall

 li $v0,10 #exit

 syscall

Inclass excercise

