MIPS Function Continued

Review

* Function

— A consecutive piece of code doing a
specific thing

— To go to the function, use jal
Function, which does two things:

e goes to the code starting at the address
associated with label Function,

e stores the address of the instruction
immediately following the jal instruction into
Sra.

— To return from the function, use jr
Sra, which takes the code back to the
instruction following the jal instruction.

Functi

add $t0, $t1, $t0

sub $t2, $t1, $t0

jal Function

sll $t0, $t0, 2

add $t0, $t1, $t0

sub $t2, $t1, $t0

jr $ra

Review

e Stack

— A piece of memory
— Lastin first out
— Use $sp to keep track of the first used element on the stack

Character and String Operations

e Characters are encoded as 0’s and 1’s using ASCI|
most commonly
— American Standard Code for Information Interchange
— Each character is represented using 8 bits (or a byte)

— If stored within an integer, the 8 bit character portion will
be located within the lowermost ordered bits; this allows
you to optionally store characters within integers

* MIPS provides instructions to move bytes

— Load byte (1Db) loads a byte to the rightmost 8 bits of a
register

— Store byte (sb) write the rightmost 8 bits of a register to
memory

SPIM syscalls

Syscalls are operations defined within the assembler (not
the processor)

The syscall operation is dependent on the value in SvO

The parameters to the operation are in Sa0-Sa3 (except for
floating point numbers and then it is $f12)

Read operations store the value back in SvO (again except
for floating point numbers and then it is $f0)

SPIM syscalls

Integers
1i sv0,1 # print an integer in $a0
1i $a0,100
syscall
1i s$vO0,5 # read an integer into $v0

syscall

SPIM syscalls

Characters
1i sv0,11 # print a character in $a0
1i sa0,’a’
syscall
1i sv0,12 # read a character into $vO

syscall

SPIM syscalls
Strings

11 s$v0,4 # print an ASCIIZ string at $al
la $a0,msg hello
syscall

Don’t worry about reading i1in strings

SPIM syscalls
Floating Point

1i s$v0,2
11 $£12,5.5
syscall

1i s$v0,3
1i $£12,5.5
syscall

1i $svO0, 6
syscall

1i $vO0,7
syscall

i
i

i

print a single precision
floating point number in $£f12

print a double precision
floating point number in $£f12

read a single precision
floating point number into $f0

read a double precision
floating point number into $f0

SPIM syscalls
Others

1i $vO0,10 fexit
syscall

String Copy Procedure

void strcpy (char xL1, char ylL1)
1
int i:
i=0;
while ({x[il = ylLil) 1= 0) /% copy and test byte %/
i=i+1;

msg_hello:

msg_empty:

main:

done:

strepy:

.data

.asciiz "Hello\n"

.Space 400

text
.globl main

li $v0,4
la $a0,msg_hello
syscall

li $v0,4
la $a0,msg_empty
syscall

la $a0,msg_empty #dst
la $al,msg_hello #src
jal strcpy

li $v0,4
la $a0,msg_empty
syscall

li $v0,10 #exit
syscall

Ib $t0, 0($al)
sb $t0, 0($a0)
addi $a0, $a0, 1
addi $al, $al, 1
bne $t0, $0, strcpy
jr $ra

Stack

e Key things to keep in mind:

— Stack is a software concept — last in first out, that’s
it.

— In MIPS, you implement the stack by yourself by
keeping Ssp always pointing to the top element
on the stack

— Stack can be used in functions to save register
values, and is the standard approach to save
register values. But

* You can also use stack for other purposes
* This is not the only way to save register values.

msqg:
world"
endl:

main:

LO:

.data
.asciiz "hello

.asciiz "\n"

.Lext
.globl main

addi Ssp, $sp, -1
sb $0,0(Ssp)
la Stl, msg

1b $t0,0(stl)
beq $t0,$0, L1
addi Ssp, $sp, -1
sb $t0, 0 ($Ssp)
addi S$t1,stl,1
j LO

Ll:

L2:

L3:

la $tl,msg

1b $t0,0(Ssp)
addi S$sp, $sp, 1
sb $t0,0(Stl)
beqg $t0, $0, L3

addi s$t1,$t1,1
3§ L2

la $a0,msg
1i $v0,4
syscall

la $a0,endl
1i $vO0,4
syscall

1i $v0,10 #exit
syscall

Inclass excercise

