MIPS function continued

Review

Functions

— Series of related instructions one after another in memory
— Called through the jal instruction

— Pointed to by a label like any other

— Returns by calling jr Sra

Stack

— Top pointed to by Ssp

— Used to store registers between function calls

» Typically Sra and $s0-7; but will need to store $a0-3, Sv0-1, and $t0-9 in
the event of a series of nested calls

— Can be used to store other things too

e Such as characters in a string when reversing the string

Review

* Characters
— Use one byte of memory
— Can be used like integers and stored within integers
— Can use constants through the use of single quotes, e.g. li St0, ‘a’
— Passed into and out of memory through sb / Ib
* Strings
— An array of characters in memory

— Used like other arrays except
* Use .asciiz for a null-character terminated (C styled) string
* Use .ascii for a non null-character terminated string (not recommended)
* Enclose the array in double quotes

In Class Exercise 3

.data
A: .word 0,1,2,3,4,5,6,7,8,9
NF: .asciiz "not found"
FL: .asciiz "found in lower"

FU: .asciiz "found in upper"

.text

.globl main
main:

la $al0, A

1i $al, 10

1i sa2, 6

1i $a3, 5

jal findElements

la $a0, NF
blt $v0, $0, print
la $a0, FL
beg $v0, $0, print
la $a0, FU

print:
1i $v0, 4
syscall

done:
1i $v0, 10 # exit
syscall

findElements:
$a0 = array
$Sal = length
$a2 = value 1
$a3 = value 2
$v0 = found value status

addi $sp, $sp, -4 # Push ra onto stack
sw $ra, 0(S$sp)

1i $v0o, -1 # Set return to default
1i $vi, O # 1
loop:
bge $vl, $al, find done
1w $t0, 0($a0) # A[i]

beg $t0, $a2, first value
beg $t0, $a3, second value
addi S$v1, Svl, 1 # update i
addi $a0, $a0, 4 # update array slot
j loop
first value:
ori $v0, $0, O # Set return to O
J find done
second value:
ori $v0, $0, 1 # Set return to 1

find done

lw $ra, 0(Ssp) # Pop ra off of stack

addi $sp, $sp, 4

jr S$ra # Return

Implementing a Recursive Function

* Suppose we want to implement this in MIPS:

int fact (int n)
{
if (n < 1)
return (1);
else
return (n * fact (n - 1));

|
* |tis arecursive function —a function that calls

itself.

* It will keep on calling itself, with different
parameters, until a terminating condition is met.

What happens if we call fact(4)? int fact (int n)
First time call fact, compare 4 with 1, not less than 1, call fact again — { T
fact(3). return (1);
Second time call fact, compare 3 with 1, not less than 1, call fact agai e15;eetum (n * fact (n -
— fact(2). }
Third time call fact, compare 2 with 1, not less than 1, call fact again —
fact(1).
Fourth time call fact, compare 1 with 1, not less than 1, call fact again
— fact(0).

The Recursive Function

Fifth time call fact, compare 0 with 1, less than 1, return 1.

Return to the time when fact(0) was called (during the call of fact(1)).
Multiply 1 with 1, return 1.

Return to the time when fact(1) was called (during the call of fact(2)).
Multiply 2 with 1, return 2.

Return to the time when fact(2) was called (during the call of fact(3)).
Multiply 3 with 2, return 6.

Return to the time when fact(3) was called (during the call of fact(4)).
Multiply 4 with 6, return 24.

1));

The Recursive Function

* In MIPS, we say calling a tact: Jal fact
function as going to the
function. So we go to the
function over and over
again, until the terminating
condition is met.

 Here, the function is called
“fact,” so we will have a line
of code inside the fact
function:

jJjal fact

The Recursive Function

* The parameter should be passed fact: addi 5a0, 5a0, -1
in $a0. In the C function, every jal fact
time we call fact, we call with n-1.
So, in the MIPS function, before
we do “jal fact”, we should
have “addi $a0O, $a0,-1."

The Recursive Function

After calling fact, we fact: addi $a0, $a0, -1
multiply the return result jai gagt o e
. mu v0, vO, a

with n, so, need to add

multiplications.

The Recursive Function

e After multiplying, we
return.

fact:

addi $a0, $al0, -1
Jal fact

mul S$Sv0, $v0, $a0
jr Sra

The Recursive Function

fact:

* So, one if else branch
is done. The other

branch is to compare
Sa0 with 1, and

should call fact again
if less than 1 and
otherwise return 1.

Ll:

slti $t0, $al0, 1
beg $t0, S$zero, L1
ori s$v0, S0, 1

jr Sra

addi $a0, $al0, -1
Jal fact

mul $v0, $v0, $a0
jr Sra

Any problems?

The Recursive Function

* The problem is that fact: addi $sp, $sp, -4
the function will call Svl“t?f;oo(zs?)
. S 1 ’ ayu,
itself, as we have beq $10, Szere, Ll
expected, but it will ori $v0, $0, 1
not return correctly! lw $ra, 0($sp)
ddi $sp, $sp, 4
* We need to save e osea
Sra, because we Ll addi $a0, $a0, -1
made another jal fact
function call inside Tulj;’o'ofzgé) »al
. w eIa,
the function. We ~dd: Ssp, Ssp, 4
should always do so. jr $ra

* |s this enough?

The Recursive Function

So now we can return to the main
function, but the return result is O,

why?

A call to fact modifies $a0. But
when we return from a call, we multiply

it with Sa0!

So, should also save $a0!

Restore it before using it again.

fact:

Ll:

addi S$sp, Ssp, -8
sw Sra, 4 (Ssp)

sw $a0, 0 (S$sp)
slti $t0, $a0, 1
beq $t0, S$zero, L1
ori S$v0, S0, 1
addi S$sp, Ssp, 8
jr Sra

addi $a0, $a0, -1
Jal fact

lw Sra, 4 (Ssp)

1w $a0, 0(Ssp)
mul S$Sv0, $Sv0, $a0
addi S$sp, Ssp, 8
jr Sra

Main:

done:

fact:

Ll:

.Lext
.globl main
11 Sa0, 4
Jal fact

11 $v0,10
syscall

addi S$sp, Ssp, -8
sw Sra, 4($sp)

sw $al0, 0(Ssp)
slti $t0, $a0, 1
beq $t0, Szero, L1
ori Sv0, $0, 1
addi S$sp, Ssp, 8
jr Sra

addi $a0, $a0, -1
Jal fact

1w Sra, 4(Ssp)

1w Sa0, 0(Ssp)
mul S$v0, $Sv0, $a0
addi S$sp, Ssp, 8
jr Sra

6/9/2013

The Stack During Recursion

Stack

Old $a0
Old Sra

Old $a0
Old Sra

Old $a0
Old $ra

Old $a0
Old Sra

fact (10)

fact (9)

fact (8)

Stack grows
fact (7)

week04-3.ppt

15

Two other MIPS pointers

e Sfp: When you call a C function, the function may
declare an array of size 100 like int A[100]. It is on
the stack. You would want to access it, but the stack

pointer may keep changing, so you need a fixed
reference. Sfp isthe “frame pointer,” which should

always point to the first word that is used by this
function.
e Sgp: the “global pointer.” A reference to access the

static data.

