
MIPS function continued

Review

• Functions
– Series of related instructions one after another in memory

– Called through the jal instruction

– Pointed to by a label like any other

– Returns by calling jr $ra

• Stack
– Top pointed to by $sp

– Used to store registers between function calls

• Typically $ra and $s0-7; but will need to store $a0-3, $v0-1, and $t0-9 in
the event of a series of nested calls

– Can be used to store other things too

• Such as characters in a string when reversing the string

Review

• Characters
– Use one byte of memory

– Can be used like integers and stored within integers

– Can use constants through the use of single quotes, e.g. li $t0, ‘a’

– Passed into and out of memory through sb / lb

• Strings
– An array of characters in memory

– Used like other arrays except
• Use .asciiz for a null-character terminated (C styled) string

• Use .ascii for a non null-character terminated string (not recommended)

• Enclose the array in double quotes

In Class Exercise 3
 .data

A: .word 0,1,2,3,4,5,6,7,8,9

NF: .asciiz "not found"

FL: .asciiz "found in lower"

FU: .asciiz "found in upper"

 .text

 .globl main

main:

 la $a0, A

 li $a1, 10

 li $a2, 6

 li $a3, 5

 jal findElements

 la $a0, NF

 blt $v0, $0, print

 la $a0, FL

 beq $v0, $0, print

 la $a0, FU

print:

 li $v0, 4

 syscall

done:

 li $v0, 10 # exit

 syscall

findElements:

 # $a0 = array

 # $a1 = length

 # $a2 = value 1

 # $a3 = value 2

 # $v0 = found value status

 addi $sp, $sp, -4 # Push ra onto stack

 sw $ra, 0($sp)

 li $v0, -1 # Set return to default

 li $v1, 0 # i

loop:

 bge $v1, $a1, find_done

 lw $t0, 0($a0) # A[i]

 beq $t0, $a2, first_value

 beq $t0, $a3, second_value

 addi $v1, $v1, 1 # update i

 addi $a0, $a0, 4 # update array slot

 j loop

first_value:

 ori $v0, $0, 0 # Set return to 0

 j find_done

second_value:

 ori $v0, $0, 1 # Set return to 1

find_done :

 lw $ra, 0($sp) # Pop ra off of stack

 addi $sp, $sp, 4

 jr $ra # Return

Implementing a Recursive Function

• Suppose we want to implement this in MIPS:

• It is a recursive function – a function that calls
itself.

• It will keep on calling itself, with different
parameters, until a terminating condition is met.

The Recursive Function

What happens if we call fact(4)?

• First time call fact, compare 4 with 1, not less than 1, call fact again –
fact(3).

• Second time call fact, compare 3 with 1, not less than 1, call fact again
– fact(2).

• Third time call fact, compare 2 with 1, not less than 1, call fact again –
fact(1).

• Fourth time call fact, compare 1 with 1, not less than 1, call fact again
– fact(0).

• Fifth time call fact, compare 0 with 1, less than 1, return 1.

• Return to the time when fact(0) was called (during the call of fact(1)).
Multiply 1 with 1, return 1.

• Return to the time when fact(1) was called (during the call of fact(2)).
Multiply 2 with 1, return 2.

• Return to the time when fact(2) was called (during the call of fact(3)).
Multiply 3 with 2, return 6.

• Return to the time when fact(3) was called (during the call of fact(4)).
Multiply 4 with 6, return 24.

The Recursive Function

• In MIPS, we say calling a
function as going to the
function. So we go to the
function over and over
again, until the terminating
condition is met.

• Here, the function is called
“fact,” so we will have a line
of code inside the fact
function:

 jal fact

fact: jal fact

The Recursive Function

• The parameter should be passed
in $a0. In the C function, every
time we call fact, we call with n-1.
So, in the MIPS function, before
we do “jal fact”, we should
have “addi $a0, $a0,-1.”

fact: addi $a0, $a0, -1

 jal fact

The Recursive Function

• After calling fact, we
multiply the return result
with n, so, need to add
multiplications.

fact: addi $a0, $a0, -1

 jal fact

 mul $v0, $v0, $a0

The Recursive Function

• After multiplying, we
return.

fact: addi $a0, $a0, -1

 jal fact

 mul $v0, $v0, $a0

 jr $ra

The Recursive Function

• So, one if else branch
is done. The other
branch is to compare
$a0 with 1, and
should call fact again
if less than 1 and
otherwise return 1.

fact: slti $t0, $a0, 1

 beq $t0, $zero, L1

 ori $v0, $0, 1

 jr $ra

L1: addi $a0, $a0, -1

 jal fact

 mul $v0, $v0, $a0

 jr $ra

Any problems?

The Recursive Function

• The problem is that
the function will call
itself, as we have
expected, but it will
not return correctly!

• We need to save
$ra, because we
made another
function call inside
the function. We
should always do so.

• Is this enough?

fact: addi $sp, $sp, -4

 sw $ra, 0($sp)

 slti $t0, $a0, 1

 beq $t0, $zero, L1

 ori $v0, $0, 1

 lw $ra, 0($sp)

 addi $sp, $sp, 4

 jr $ra

L1: addi $a0, $a0, -1

 jal fact

 mul $v0, $v0, $a0

 lw $ra, 0($sp)

 addi $sp, $sp, 4

 jr $ra

The Recursive Function

• So now we can return to the main
function, but the return result is 0,
why?

• A call to fact modifies $a0. But
when we return from a call, we multiply
it with $a0!

• So, should also save $a0!

• Restore it before using it again.

fact: addi $sp, $sp, -8

 sw $ra, 4($sp)

 sw $a0, 0($sp)

 slti $t0, $a0, 1

 beq $t0, $zero, L1

 ori $v0, $0, 1

 addi $sp, $sp, 8

 jr $ra

L1: addi $a0, $a0, -1

 jal fact

 lw $ra, 4($sp)

 lw $a0, 0($sp)

 mul $v0, $v0, $a0

 addi $sp, $sp, 8

 jr $ra

 .text

 .globl main

Main: li $a0, 4

 jal fact

done: li $v0,10

 syscall

fact: addi $sp, $sp, -8

 sw $ra, 4($sp)

 sw $a0, 0($sp)

 slti $t0, $a0, 1

 beq $t0, $zero, L1

 ori $v0, $0, 1

 addi $sp, $sp, 8

 jr $ra

L1: addi $a0, $a0, -1

 jal fact

 lw $ra, 4($sp)

 lw $a0, 0($sp)

 mul $v0, $v0, $a0

 addi $sp, $sp, 8

 jr $ra

6/9/2013 week04-3.ppt 15

The Stack During Recursion

Two other MIPS pointers

• $fp: When you call a C function, the function may
declare an array of size 100 like int A[100]. It is on
the stack. You would want to access it, but the stack
pointer may keep changing, so you need a fixed
reference. $fp is the “frame pointer,” which should
always point to the first word that is used by this
function.

• $gp: the “global pointer.” A reference to access the
static data.

