MIPS I/O and Interrupt

Review

Floating point instructions are carried out on a
separate chip called coprocessor 1

You have to move data to/from coprocessor 1 to do
most common operations such as printing, calling
functions, converting number, etc

There are 32 floating point registers, SfO - $f31

You can access all 32 with single precision
instructions

You can only access even numbered registers with
double precision instructions

Review

* Floating point instructions use the following
abbreviations:
— s —single precision
— d —double precision
— w —integer (word)
— c1 —coprocessor 1
— mt/mf — move to / move from
— cvt — convert
— bclt / bclf — branch if true/false
— c—compare

Review

e (Questions that were asked last class:

— What delimiter is used to construct an array of double precision numbers?
* .double
* Also, .byte and .half construct arrays of 8bit and 16bit values respectively

— Can you move a double precision number to a word in the main processor?
* Yes.
* There is a psudo instruction that moves the values from two floating point registers (a double)
to two main registers. The first parameter is a main register and the floating point number is

stored here and in the main register immediately following it. E.g if you specify $t0, it will store
into St0 and St1

— mfcl.d SvO, Sf0
Other choices available:

Convert to single precision then move
— cvt.s.d $f9, $f0
— mtcl SvO, $f9
Same as the psudo instruction, but can pick the registers you want
— mtcl $Ss0, $f0
— mtcl StO, $f1

— Are there other flags you can use in coprocessor 17?

* Yes, there are 8 flags you can use from 0 to 7
* Ex.c.le.s 4 Sf0, Sf1

SPIM 1/0O and MIPS Interrupts

e The materials of this lecture can be found in
A7-A8 (3" Edition) and B7-B8 (4t Edition).

* The material covered here will only make a
orief appearance on the midterm and won’t
be on the final nor any exercises / homeworks

* |t is mainly used to give you a background for
future classes such as Computer Organization
Il and Operating Systems

The MIPS memory

e Actually, everything above Ox7fffffff is used by
the system.

<« 0xFFFF FFEFF
Remapped
Memory
<~ 0x7FFF FFFF
STACK SEGMENT [Stack
fep—> .L
Heap
Data
DATA SEGMENT
Static
Data
— Sgp—> e 0x1000 0000
TEXT SEGMENT Text
— € 0x0400 0000
Reserved < 0x0000 0000

What is in there?

Special operating system functions
/0O registers mapped to memory addresses
Kernel data

SPIM Input

 SPIM allows you to read from the keyboard
(which is similar to reading something from the
true 1/0O register)

Receiver Control

O0xFFFF0000 Unused (00...00)

El

< nding
= | Apeay [£— mndug

BITS: 31-2

[

Eeady [Input]: 0 - No new data to be read.
1 - New data to be read.
LE. [Output]: 0 - Do not trigger an mterrupt when data 1s available.
1 - Trigger an mterrupt when data 1s available.

Input
Receiver Data i
0xFFFF0004 Unused (00...00) Regiit:e"
BITS: 318 =0

Eecerved Byte [Input]: The value of the key pressed. (Sets Ready to 0 on read.)

main:

waitloop:

done:

text
.globl main

li SsO, 'q'
lui $tO, OXFFFF

lw $t1, 0($t0)

andi St1, St1, 0x0001
beq St1, Szero, waitloop
lw $a0, 4($t0)

beq $a0, $s0O, done

li SvO,1
syscall

li Sv0,4

la Sa0, new_line
syscall

j waitloop

li Svo, 10
syscall

.data

new_line: .asciiz "\n"

q key
St0 = OxFFFFO000

load control byte

check to see if new data is there
loop if not

load data byte

exit if 'q'is typed

print integer

print string

exit

Remember to select
“mapped 1/0”’ in PCSpim
settings.

To set it, select “"Simulator”’
then "Settings...”

SPIM output

* Similar to the input, SPIM has two memory
locations for output
— OxffffO008: Transmitter control.

* Bit 1: interrupt enable
* Bit O: ready

— OxffffO00c: Transmitter data.
* Bit 0-7: data byte

SPIM output

* |f you need to show something on the
console, do the following:

1. Check if ready bit is 1. If yes, proceed. Otherwise,
wait.

2. Write to the data. The ready bit will be reset to O,
and will be set to 1 after the byte is transmitted.

guestion

* |s this the most efficient way to do it?

e Remember that the processor usually has a lot
of things to do simultaneously

Interrupt

* The key problem is that the time when the
input occurs cannot be predicted by your
program

 Wouldn’t it be nice if you could “focus on
what you are doing” while be “interrupted” if
some inputs come?

MIPS interrupt

EPC=Gdraetings
* With external interrupt, if an event

happens that must be processed, the add $t0, $t1, $t0

following things will happen: sub $t2, $t1, $t0

— The address of the instruction that is sub $t0 $s0, $a0
about to be executed is saved into a 0x00000%28: | sll $t0, $t0, 2

special register called EPC

— PCissettobe 0x80000180, the
starting address of the interrupt

handler 0x80000180% add $Kk0, $k1, $kO
* which takes the processor to the sub $k1, $k0, $k1
interrupt handler eret

— The last instruction of the interrupt
should be “eret” which sets the

value of the PC to the value stored in
EPC

MIPS Interrupt

Is it okay to use St 0O in the interrupt?

— Note the difference between an interrupt
and a function call.

— For a function call, the caller is aware of the
function call, so, it is not expecting the value
of St0 to be the same after the call.

— For an interrupt, the user program is running
and gets interrupted. The user program
does not know about the interruption at
all.

— So, if you changed $t0 inside an interrupt,
after the interrupt returns, the user program
will not even be aware of the fact that it has
been interrupted, and will use the wrong
value of $tO0.

EPC=G@nefiags t0= 860@thing

0x00000128:

0x80000180:

add $tO, $t1, $t0

sub $t2, $t1, $t0

sub $t0 $s0, $a0

sll $t0, $t0, 2

add $kO, $k1, $kO

sub $t0, $kO0, $k1

eret

MIPS Interrupt

e SkO and Skl are both used as temporary
variables in interrupt servicing routines.

* Interrupt hand

— Usually shoulc
flags, and let t

Interrupt

ers should be short.

just use the interrupt to set some

he main program to check the flags

— Flags can be registers and can be checked much
faster than reading the value of an external pin or
reading data from other chips

.kdata
sl: .word 10
s2: .word 11
new_line: .asciiz "\n"

text

.globl main
main:

mfcO $Sa0, $12

ori $a0, 0xff11

mtc0 $a0, $12

lui StO, OXFFFF
ori $a0, SO, 2
sw $a0, 0(St0)

here: j here

li Sv0, 10
syscall

.ktext 0x80000180

sw Sv0, sl
sw $a0, s2

kernel data

read from the status register
enable all interrupts
write back to the status register

St0 = OXFFFFO000
enable keyboard interrupt

mfc0 SkO, S13

srl $ao, $ko, 2

andi $a0, $a0, Ox1f
bne $a0, Szero, kdone

lui SvO, OXFFFF
Iw $ao0, 4(Sv0)
li SvO,1
syscall

li Sv0,4
la $a0, new _line

write back to OxFFFFO00O; syscall
stay here forever kdone:

Iw SvO0, s1
exit,if it ever comes here Iw $a0, s2

kernel code starts here

We need to use these registers

not using the stack because the interrupt
might be triggered by a memory reference
using a bad value of the stack pointer

mtc0 $0, $13
mfc0 $ko, $12
andi $kO, Oxfffd
ori $kO, 0x11
mtc0 $kO, $12
eret

Cause register

Extract ExcCode Field

Get the exception code

Exception Code 0 is I/0O. Only processing /O here

St0 = OXFFFFO000

get the input key

print it here.

Note: interrupt routine should return very fast, so
doing something like print is NOT a good practice!

print the new line

Restore other registers

Clear Cause register
Set Status register
clear EXL bit

Interrupts enabled
write back to status
return to EPC

MIPS interrupt

Coprocessor 0 is a part of the CPU to handle interrupts. In SPIM, Coprocessor 0 contains the
— BadVAddr (8), storing the memory address causing the exception
— Count (9), increment by 1 every 10ms by default
— Compare (11), if equals to Count, trigger an interrupt of level 5
— Status (12),
* Bit 8-15: interrupt mask. A bit being ~"1”” means that this interrupt is enabled.
* Bit 4: user mode. With SPIM, always 1.

* Bit 1: exception level (EXL). Normally ~°0,” set to 1" if an exception occurred. When
"1, no further interrupt is enabled and EPC is not updated.

* Bit O: interrupt enable. Enable (*"1”) or disable (°0”) all interrupts.
— Cause (13)

* Bit 8-15: pending interrupts . A bit being "1 means that this interrupt situation
occurred, even if it is not enabled.

* Bit 2-6: Exception code. 0" is hardware interrupt.
— EPC(14)
— Config (16), config the machine

These registers can be read and modified using the instructions mfcO (move from coprocessor 0)
and mtcO (move to coprocessor 0).

