
MIPS I/O and Interrupt

Review

• Floating point instructions are carried out on a
separate chip called coprocessor 1

• You have to move data to/from coprocessor 1 to do
most common operations such as printing, calling
functions, converting number, etc

• There are 32 floating point registers, $f0 - $f31

• You can access all 32 with single precision
instructions

• You can only access even numbered registers with
double precision instructions

Review

• Floating point instructions use the following
abbreviations:

– s – single precision

– d – double precision

– w – integer (word)

– c1 – coprocessor 1

– mt/mf – move to / move from

– cvt – convert

– bc1t / bc1f – branch if true/false

– c – compare

Review
• Questions that were asked last class:

– What delimiter is used to construct an array of double precision numbers?
• .double

• Also, .byte and .half construct arrays of 8bit and 16bit values respectively

– Can you move a double precision number to a word in the main processor?
• Yes.

• There is a psudo instruction that moves the values from two floating point registers (a double)
to two main registers. The first parameter is a main register and the floating point number is
stored here and in the main register immediately following it. E.g if you specify $t0, it will store
into $t0 and $t1

– mfc1.d $v0, $f0

• Other choices available:

• Convert to single precision then move

– cvt.s.d $f9, $f0

– mtc1 $v0, $f9

• Same as the psudo instruction, but can pick the registers you want

– mtc1 $s0, $f0

– mtc1 $t0, $f1

– Are there other flags you can use in coprocessor 1?
• Yes, there are 8 flags you can use from 0 to 7

• Ex. c.le.s 4 $f0, $f1

SPIM I/O and MIPS Interrupts

• The materials of this lecture can be found in
A7-A8 (3rd Edition) and B7-B8 (4th Edition).

• The material covered here will only make a
brief appearance on the midterm and won’t
be on the final nor any exercises / homeworks

• It is mainly used to give you a background for
future classes such as Computer Organization
II and Operating Systems

The MIPS memory

• Actually, everything above 0x7fffffff is used by
the system.

What is in there?

• Special operating system functions

• I/O registers mapped to memory addresses

• Kernel data

• …

SPIM Input

• SPIM allows you to read from the keyboard
(which is similar to reading something from the
true I/O register)

 .text
 .globl main
main:
 li $s0, 'q' # q key
 lui $t0, 0xFFFF # $t0 = 0xFFFF0000

waitloop:
 lw $t1, 0($t0) # load control byte
 andi $t1, $t1, 0x0001 # check to see if new data is there
 beq $t1, $zero, waitloop # loop if not

 lw $a0, 4($t0) # load data byte

 beq $a0, $s0, done # exit if 'q' is typed

 li $v0,1 # print integer
 syscall

 li $v0,4 # print string
 la $a0, new_line
 syscall

 j waitloop

done:
 li $v0, 10 # exit
 syscall

 .data
new_line: .asciiz "\n"

• Remember to select

``mapped I/O’’ in PCSpim

settings.

• To set it, select ``Simulator’’

then ``Settings…’’

SPIM output

• Similar to the input, SPIM has two memory
locations for output

– 0xffff0008: Transmitter control.

• Bit 1: interrupt enable

• Bit 0: ready

– 0xffff000c: Transmitter data.

• Bit 0-7: data byte

SPIM output

• If you need to show something on the
console, do the following:

1. Check if ready bit is 1. If yes, proceed. Otherwise,
wait.

2. Write to the data. The ready bit will be reset to 0,
and will be set to 1 after the byte is transmitted.

question

• Is this the most efficient way to do it?

• Remember that the processor usually has a lot
of things to do simultaneously

Interrupt

• The key problem is that the time when the
input occurs cannot be predicted by your
program

• Wouldn’t it be nice if you could “focus on
what you are doing” while be “interrupted” if
some inputs come?

MIPS interrupt

• With external interrupt, if an event
happens that must be processed, the
following things will happen:

– The address of the instruction that is
about to be executed is saved into a
special register called EPC

– PC is set to be 0x80000180, the
starting address of the interrupt
handler

• which takes the processor to the
interrupt handler

– The last instruction of the interrupt
should be “eret” which sets the
value of the PC to the value stored in
EPC

a

a

a

a

a

a

a a add $t0, $t1, $t0

a sub $t2, $t1, $t0

a sub $t0 $s0, $a0

a add $k0, $k1, $k0

a sub $k1, $k0, $k1

a eret

.

.

.

0x80000180:

a sll $t0, $t0, 2 0x00000128:

EPC=0x00000128 EPC= something

MIPS Interrupt

• Is it okay to use $t0 in the interrupt?
– Note the difference between an interrupt

and a function call.

– For a function call, the caller is aware of the
function call, so, it is not expecting the value
of $t0 to be the same after the call.

– For an interrupt, the user program is running
and gets interrupted. The user program
does not know about the interruption at
all.

– So, if you changed $t0 inside an interrupt,
after the interrupt returns, the user program
will not even be aware of the fact that it has
been interrupted, and will use the wrong
value of $t0.

a

a

a

a

a

a

a a add $t0, $t1, $t0

a sub $t2, $t1, $t0

a sub $t0 $s0, $a0

a add $k0, $k1, $k0

a sub $t0, $k0, $k1

a eret

.

.

.

0x80000180:

a sll $t0, $t0, 2 0x00000128:

EPC=0x00000128 EPC= something t0= something t0= 10 t0= 3000

MIPS Interrupt

• $k0 and $k1 are both used as temporary
variables in interrupt servicing routines.

Interrupt

• Interrupt handlers should be short.

– Usually should just use the interrupt to set some
flags, and let the main program to check the flags

– Flags can be registers and can be checked much
faster than reading the value of an external pin or
reading data from other chips

 .kdata # kernel data

s1: .word 10

s2: .word 11

new_line: .asciiz "\n"

 .text

 .globl main

main:

 mfc0 $a0, $12 # read from the status register

 ori $a0, 0xff11 # enable all interrupts

 mtc0 $a0, $12 # write back to the status register

 lui $t0, 0xFFFF # $t0 = 0xFFFF0000

 ori $a0, $0, 2 # enable keyboard interrupt

 sw $a0, 0($t0) # write back to 0xFFFF0000;

here: j here # stay here forever

 li $v0, 10 # exit,if it ever comes here

 syscall

 .ktext 0x80000180 # kernel code starts here

 sw $v0, s1 # We need to use these registers

 sw $a0, s2 # not using the stack because the interrupt

 # might be triggered by a memory reference

 # using a bad value of the stack pointer

 mfc0 $k0, $13 # Cause register

 srl $a0, $k0, 2 # Extract ExcCode Field

 andi $a0, $a0, 0x1f # Get the exception code

 bne $a0, $zero, kdone # Exception Code 0 is I/O. Only processing I/O here

 lui $v0, 0xFFFF # $t0 = 0xFFFF0000

 lw $a0, 4($v0) # get the input key

 li $v0,1 # print it here.

 syscall # Note: interrupt routine should return very fast, so

 # doing something like print is NOT a good practice!

 li $v0,4 # print the new line

 la $a0, new_line

 syscall

kdone:

 lw $v0, s1 # Restore other registers

 lw $a0, s2

 mtc0 $0, $13 # Clear Cause register

 mfc0 $k0, $12 # Set Status register

 andi $k0, 0xfffd # clear EXL bit

 ori $k0, 0x11 # Interrupts enabled

 mtc0 $k0, $12 # write back to status

 eret # return to EPC

MIPS interrupt

• Coprocessor 0 is a part of the CPU to handle interrupts. In SPIM, Coprocessor 0 contains the

– BadVAddr (8), storing the memory address causing the exception

– Count (9), increment by 1 every 10ms by default

– Compare (11), if equals to Count, trigger an interrupt of level 5

– Status (12),

• Bit 8-15: interrupt mask. A bit being ``1’’ means that this interrupt is enabled.

• Bit 4: user mode. With SPIM, always 1.

• Bit 1: exception level (EXL). Normally ``0,’’ set to ``1’’ if an exception occurred. When
``1,’’ no further interrupt is enabled and EPC is not updated.

• Bit 0: interrupt enable. Enable (``1’’) or disable (``0’’) all interrupts.

– Cause (13)

• Bit 8-15: pending interrupts . A bit being ``1’’ means that this interrupt situation
occurred, even if it is not enabled.

• Bit 2-6: Exception code. ``0’’ is hardware interrupt.

– EPC (14)

– Config (16), config the machine

• These registers can be read and modified using the instructions mfc0 (move from coprocessor 0)
and mtc0 (move to coprocessor 0).

