
Writing an Embedded Controller

Embedded Controller

• A ‘computer’ with a dedicated function within
a larger system

• Usually has ‘real time computing’ constraints

– Is expected to process requests at a certain speed

– Example, TV controllers are expected to respond
to and typically fully process each user input
within at most a few hundred milliseconds

• Examples:

– Digital watches, MP3 players, traffic lights, cars,
TVs, Washing machines, game consoles, printers,
routers, etc.

Writing an Embedded Controller

• It usually consists of two parts
– Initialization

– A main loop

• More challenging than HW3 because HW3 is stateless, the
microcontroller has states.
– A state based program has to keep track of various global variables

and program execution can produce different results each time it is
run

– Stateless programs produce the same output during each invocation
and at expected to not have any global variables

• Experience:
– The main loop usually has to deal with many things. It is important

NOT to stay in any job for too long. You should process an event and
almost immediately return to the main loop.

A Simple Program to Get Started

• Write a program which

– Prints out “TV is working” every 3 seconds

– Print out the ASCII of any key you have pressed
immediately.

Two Jobs

• The simple program has two jobs:

1. A periodical job executed every 3 seconds

2. A job to process the input

• Note:

– Cannot sleep for 3 seconds and then print out the sentence because
cannot process the input while sleeping

– Must make sure that each iteration of the main loop is short, such
that you can check at a fine time granularity if

• need to print status

• Has new keyboard input

The code should look like

 loop: if key pressed

 print ascii value

 if 3 sec timer expires

 print msg

 goto loop

 .kdata # kernel data

s1: .word 10 # storage for register $v0

s2: .word 11 # storage for register $a0

new_line:

 .asciiz "\n"

msg_tvworking:

 .asciiz "TV is working\n"

.ktext 0x80000180 # kernel interupt code starts here

 sw $v0, s1 # Save registers

 sw $a0, s2

 mfc0 $k0, $13 # Cause register

 srl $a0, $k0, 2 # Extract ExcCode Field

 andi $a0, $a0, 0x1f

 bne $a0, $zero, kdone # Exception Code 0 is I/O. Only processing I/O here

 lui $v0, 0xFFFF # $t0 = 0xFFFF0000;

 lw $s6, 4($v0) # get the input key, using $s6 as destination

kdone:

 lw $v0, s1 # Restore registers

 lw $a0, s2

 mtc0 $0, $13 # Clear Cause register

 mfc0 $k0, $12 # Set Status register

 andi $k0, 0xfffd # clear EXL bit

 ori $k0, 0x11 # Interrupts enabled

 mtc0 $k0, $12 # write back to status

 eret # return to EPC

 .text

 .globl main

main: mfc0 $a0, $12 # read from the status register

 ori $a0, 0xff11 # enable all interrupts

 mtc0 $a0, $12 # write back to the status register

 lui $t0, 0xFFFF # $t0 = 0xFFFF0000;

 ori $a0, $0, 2 # enable keyboard interrupt

 sw $a0, 0($t0) # write back to 0xFFFF0000;

 li $s0, 300 # 3 sec counter

 li $s6, 10000 # $s6 used to pass the ascii code

 li $s7, 10000 # a number that can’t be in ascii code

loop: beq $s6, $s7, mainloopnext1

 ori $a0, $s6, 0

 li $s6, 10000 # reset $s6

 li $v0,1 # print it here.

 syscall

 li $v0,4 # print the new line

 la $a0, new_line

 syscall

mainloopnext1:

 addi $s0, $s0, -1

 bne $s0, $0, mainloopnext4

 li $s0, 300

 la $a0, msg_tvworking

 li $v0, 4

 syscall

mainloopnext4:

 jal delay_10ms

 j loop

 li $v0, 10 # exit,if it ever comes here

 syscall

delay_10ms:

 li $t0, 6000 # arbitrary value, attempts to busy

delay_10ms_loop: # loop for 10ms; may need

 addi $t0, $t0, -1 # to change $t0 for your computer

 bne $t0, $0, delay_10ms_loop

 jr $ra

A Slightly More Advanced Version

• Write a process_input function that responds to `m’, `h’, `q’ (ascii code
109, 104, 112, respectively).

• Basically, The TV is initially not in the ``menu state.’’ When the user
presses `m’ while the TV is not in the menu state, the TV should show a
very simple menu, and enters the menu state:

– “`h' to print hello, `q' to quit.”

• In the menu state,

– if the user presses `h’, print out “Hello!”

– if the user presses `q’, print out “quit” and quits the menu state.

• If not in the menu state,

– the TV does not respond to `h’ and `q’.

The Challenge

• How do you know whether to respond to ‘h’
or ‘q’ or not?

– Should not respond in the normal state

– Should respond under menu

• A naïve way is to write a process_input
function that

– Called when ‘m’ is pressed then waits there for ‘h’
and ‘q’

– Problem?

The solution

• Maintain a global variable to remember if we
are in the menu state

• Write the process_input function by checking
the variable first

 .kdata

s1: .word 10

s2: .word 11

 .data

menuLevel:

 .word 0

msg_tvworking:

 .asciiz "tv is working\n"

msg_menu:

 .asciiz "`h' to print hello, `q' to quit.\n"

msg_hello:

 .asciiz "hello!\n"

msg_quit:

 .asciiz "quit.\n“

 .ktext 0x80000180 # kernel code starts here

 sw $v0, s1 # Save registers

 mfc0 $k0, $13 # Cause register

 srl $a0, $k0, 2 # Extract ExcCode Field

 andi $a0, $a0, 0x1f

 bne $a0, $zero, kdone # Exception Code 0 is I/O. Only processing I/O here

 lui $v0, 0xFFFF # $t0 = 0xFFFF0000;

 lw $s6, 4($v0) # get the input key

kdone:

 lw $v0, s1 # Restore registers

 lw $a0, s2

 mtc0 $0, $13 # Clear Cause register

 mfc0 $k0, $12 # Set Status register

 andi $k0, 0xfffd # clear EXL bit

 ori $k0, 0x11 # Interrupts enabled

 mtc0 $k0, $12 # write back to status

 eret # return to EPC

 .text

 .globl main

main: mfc0 $a0, $12 # read from the status register

 ori $a0, 0xff11 # enable all interrupts

 mtc0 $a0, $12 # write back to the status register

 lui $t0, 0xFFFF # $t0 = 0xFFFF0000;

 ori $a0, $0, 2 # enable keyboard interrupt

 sw $a0, 0($t0) # write back to 0xFFFF0000

 li $s0, 300 # 3 secs

 li $s6, 10000 # $s6 used to pass the ascii code

 li $s7, 10000 # a large number impossible to be an ascii code

mainloop:

 # 1. read keyboard input, and process it

 beq $s6, $s7, mainloopnext1

 ori $a0, $s6, 0

 li $s6, 10000 # $s0 used to pass the ascii code

 jal process_input

mainloopnext1:

 addi $s0, $s0, -1

 bne $s0, $0, mainloopnext2

 li $v0, 4

 la $a0, msg_tvworking

 syscall

 addi $s0, $0, 300

mainloopnext2:

 jal delay_10ms

 j mainloop

 li $v0,10 # exit

 syscall

delay_10ms:

 li $t0, 6000

delay_10ms_loop:

 addi $t0, $t0, -1

 beq $t0, $0, delay_10ms_done

 j delay_10ms_loop

delay_10ms_done:

 jr $ra

process_input:

 la $t0, menuLevel

 lw $t1, 0($t0)

 bne $t1, $0, pi_menu_L_1

 li $t0, 109 # comparing with the ascii of `m'

 bne $a0, $t0, process_input_done

 la $t0, menuLevel

 li $t1, 1

 sw $t1, 0($t0)

 la $a0, msg_menu

 li $v0, 4

 syscall

 j process_input_done

pi_menu_L_1:

 li $t0, 104 # comparing with the ascii of `h'

 bne $a0, $t0, pi_menu_L_1_comp_q

 la $a0, msg_hello

 li $v0, 4

 syscall

 j process_input_done

pi_menu_L_1_comp_q:

 li $t0, 113 # comparing with the ascii of `q'

 bne $a0, $t0, process_input_done

 la $a0, msg_quit

 li $v0, 4

 syscall

 la $t0, menuLevel

 sw $0, 0($t0)

 j process_input_done

process_input_done:

 jr $ra

