Digital Logic

Abstractions in CS (gates)

* Basic Gate: Inverter

Truth Table
| 10 | —— (0]
0|1

1|0

Abstractions in CS (gates)

* Basic Gate: AND

Truth Table

A|B|Y
000
0/1/0 A

Y
111

Abstractions in CS (gates)

e Basic Gate: NAND (Negated AND)

Truth Table

TIPS P

0(0/1 B

011

1 0|1

1/1/0
D
B

Abstractions in CS (gates)

 Other Basic Gates: OR gate

Truth Table

B

™ >

>

R, R O O |>
N N =

= O = O

Abstractions in CS (gates)

* Other Basic Gates: NOR (Negated OR) gate

Truth Table

B

™ >

>

= = O O >
O O O = |

= O = O

Abstractions in CS (gates)

e Other Basic Gates: XOR gate

Truth Table

B

o) >

= = 0O O >
O R R O

= O = O

Logic Blocks

* Logic blocks are built from gates that
implement basic logic functions

— Any logical function can be constructed using AND
gates, OR gates, and inversion.

Adder

* |[n computers, the most common task is add.

* In MIPS, we write “add $t0, S$Stl, st2/”
The hardware will get the values of St1 and

St 2, feed them to an adder, and store the
result back to StO.

* So how the adder is implemented?

Half-adder

* How to implement a one-bit half-adder with
logic gates?
* A half adder takes two inputs, a and b, and

generates two outputs, sum and carry. The
inputs and outputs are all one-bit values.

d sum

b carry

Half-adder

* First, how many possible combinations of
inputs?

Half-adder

* Four combinations.

a b lsum |y

L = O O
_ O +—» O

Half-adder

* Four combinations.

0

L = O O
O +—» O

1
2
3

Half-adder

* The value of sum should be? Carry?

a b wm ey
0 0
0 1
1 0
1 1

Half-adder

* Okay. We have two outputs. But let’s
implement them one by one.

* First, how to get sum? Hint: look at the truth
table.

a b lwm
0 0 0
0 1 1
1 0 1
1 1 0

Half-adder

e Sum

\)D
/

How about carry?

e The truth table is

a b jamy
0 0 0
0 1 0
1 0 0
1 1 1

Carry

* So, the circuit for carry is

carry

B
: _/

Half-adder

* Put them together, we get

a
b

sum

carry

1-Bit Adder

e 1-bit full adder
— Also called a (3, 2) adder

Carryln

CarryOut

Sum

20

Constructing Truth Table for 1-Bit Adder

RPlRrRRIOIOC OO

IRl =IO|O
=N sl sl k=

21

Truth Table for a 1-Bit Adder

Comments

0+ 0+ 0=00,,,

0+0+1=01,

0+1+0=01,,,

0+1+1=10,,,

1+0+0=01,,,

1+0+1 =104,

1+1+0=10,

Rl lOC|lOC|C|OC

Rl C|C

rlolkr|o|lr|lolr|o

Pl |lOC|C|OC

Rlo|O|Rr|C|kR|=|OC

1+1+1=11,,

22

Sum?

e Sumis 1" when one of the following four
cases is true:

—a=1, b=0, c=0
—a=0, b=1, c=0
—a=0, b=0, c=1
—a=1, b=1, c=1

Sum

 Theidea is that we will build a circuit made of and gates and an or gate
faithfully according to the truth table.

— Each and gate corresponds to one true”’ row in the truth table. The
and gate should outputa " '1” if and only if the input combination is
the same as this row. If all other cases, the outputis ~0.”

— So, whenever the input combination falls in one of the true”’ rows,
one of the and gates is '1”, so the output of the or gate is 1.

— If the input combination does not fall into any of the “true’’ rows,
none of the and gates will output a ""1”, so the output of the or gate is
0.

Boolean Algebra

* We express logic functions using logic
equations using Boolean algebra

— The OR operator is written as +, as in A + B.
— The AND operator is written as -, as A - B.

— The unary operator NOT is written as A or A’

e Remember: This is not the binary field. Here
0+0=0, 0+1=1+0=1, 1+1=1.

25

Sum

Sum = (a- b- Carryln) + (5 b - Carryln) + (;1 b Carryln) + (a-b - Carryln)

| Catryln
a - # >
HO—
e
S =1D5

Carryout bit?

e Carryout bit is also ‘1" in four cases. When a, b
and carryin are 110, 101, 011, 111.

CO=(a-b-¢)+(a-b-¢c)+(a-b-c)+(a-b-c)

e Does it mean that we need a similar circuit as
sum?

Carryout bit
CO=(a-b-¢)+(a-b-c)+(@a-b-c)+(a-b-c)
* Actually, it can be simpler co=(a-b)+(b-¢)+ (c-a)

Carryln

A F
ID=1D:
AL)F

Y
CarryOut

1-Bit Adder

Carryln

Delay
 Hardware has delays.

* Delay is defined as the time since the input is
stable to the time when the output is stable.

* How much more delay does the one-bit full
adder take, when compared to the one-bit

half adder? :;

a + L T ™

{am P

bl * >

sum lbc -
.

carry

Q%&u%gu
F

32-bit adder

* How to get the 32-bit adder used in MIPS?

32-bit adder

Operation

Carryln

Carryln
ALUO = ResultD
CarryOut

al —

b0 —

1

al —. Carryln
ALUT

CarryOut

Result1

9

b1 —

1 L
Carryln
ALUZ2

CarryOut

a31—s| Carryln
ALU31
31—

a2 —»

Result2

1

b2 — &

Result31

Y

