Digital Logic

Abstractions in CS (gates)

- Basic Gate: Inverter
Truth Table

1	O
$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$

Abstractions in CS (gates)

- Basic Gate: AND
Truth Table

A	B	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Abstractions in CS (gates)

- Basic Gate: NAND (Negated AND)
Truth Table

A	B	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	1	1
1	0	1
1	1	0

Abstractions in CS (gates)

- Other Basic Gates: OR gate
Truth Table

A	B	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
1	1	$\mathbf{1}$

Abstractions in CS (gates)

- Other Basic Gates: NOR (Negated OR) gate

Truth Table

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

Abstractions in CS (gates)

- Other Basic Gates: XOR gate
Truth Table

A	B	
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Logic Blocks

- Logic blocks are built from gates that implement basic logic functions
- Any logical function can be constructed using AND gates, OR gates, and inversion.

Adder

- In computers, the most common task is add.
- In MIPS, we write "add \$t0, \$t1, \$t2."

The hardware will get the values of \$t1 and \$t2, feed them to an adder, and store the result back to \$t0.

- So how the adder is implemented?

Half-adder

- How to implement a one-bit half-adder with logic gates?
- A half adder takes two inputs, a and b, and generates two outputs, sum and carry. The inputs and outputs are all one-bit values.

Half-adder

- First, how many possible combinations of inputs?

Half-adder

- Four combinations.

a	b	sum	carry
0	0		
0	1		
1	0		
1	1		

Half-adder

- Four combinations.

Index = Zinputs	a	b	sum	carry
0	0	0		
1	0	1		
2	1	0		
3	1	1		

Half-adder

- The value of sum should be? Carry?

a	b	sum	carry
0	0		
0	1		
1	0		
1	1		

Half-adder

- Okay. We have two outputs. But let's implement them one by one.
- First, how to get sum? Hint: look at the truth table.

a	b	sum
0	0	0
0	1	1
1	0	1
1	1	0

Half-adder

- Sum

How about carry?

- The truth table is

a	b	carry
0	0	0
0	1	0
1	0	0
1	1	1

Carry

- So, the circuit for carry is

Half-adder

- Put them together, we get

1-Bit Adder

- 1-bit full adder
- Also called a $(3,2)$ adder

Constructing Truth Table for 1-Bit Adder

Inputs			Outputs	
\mathbf{a}	b	Carryln	Carry0ut	Sum
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Truth Table for a 1-Bit Adder

Inputs			Outputs		
\mathbf{a}	\mathbf{b}	Carryln	CarryOut	Sum	Comments
0	0	0	0	0	$0+0+0=00_{\text {two }}$
0	0	1	0	1	$0+0+1=01_{\text {two }}$
0	1	0	0	1	$0+1+0=01_{\text {two }}$
0	1	1	1	0	$0+1+1=10_{\text {two }}$
1	0	0	0	1	$1+0+0=01_{\text {two }}$
1	0	1	1	0	$1+0+1=10_{\text {two }}$
1	1	0	1	0	$1+1+0=10_{\text {two }}$
1	1	1	1	1	$1+1+1=11_{\text {two }}$

Sum?

- Sum is ' 1 ' when one of the following four cases is true:

$$
\begin{aligned}
& -a=1, b=0, c=0 \\
& -a=0, b=1, c=0 \\
& -a=0, b=0, c=1 \\
& -a=1, b=1, c=1
\end{aligned}
$$

Sum

- The idea is that we will build a circuit made of and gates and an or gate faithfully according to the truth table.
- Each and gate corresponds to one "true" row in the truth table. The and gate should output a " 1 " if and only if the input combination is the same as this row. If all other cases, the output is " 0 ."
- So, whenever the input combination falls in one of the "true" rows, one of the and gates is " 1 ", so the output of the or gate is 1 .
- If the input combination does not fall into any of the "true" rows, none of the and gates will output a " 1 ", so the output of the or gate is 0.

Boolean Algebra

- We express logic functions using logic equations using Boolean algebra
- The OR operator is written as + , as in A + B.
- The AND operator is written as \cdot, as $A \cdot B$.
- The unary operator NOT is written as \bar{A} or A^{\prime}.
- Remember: This is not the binary field. Here $0+0=0,0+1=1+0=1,1+1=1$.

$$
\begin{aligned}
& a=1, b=0, c=0 \\
& a=0, b=1, c=0 \\
& a=0, b=0, c=1 \\
& a=1, b=1, c=1
\end{aligned}
$$

$$
\text { Sum }=(\bar{a} \cdot \bar{b} \cdot \overline{\text { CarryIn }})+(\bar{a} \cdot b \cdot \overline{\text { CarryIn }})+(\bar{a} \cdot \overline{\mathrm{~b}} \cdot \text { CarryIn })+(\mathrm{a} \cdot \mathrm{~b} \cdot \text { CarryIn })
$$

Carryout bit?

- Carryout bit is also ' 1 ' in four cases. When a, b and carryin are 110, 101, 011, 111.

$$
C O=(a \cdot b \cdot \bar{c})+(a \cdot \bar{b} \cdot c)+(\bar{a} \cdot b \cdot c)+(a \cdot b \cdot c)
$$

- Does it mean that we need a similar circuit as sum?

Carryout bit

$$
C O=(a \cdot b \cdot \bar{c})+(a \cdot \bar{b} \cdot c)+(\bar{a} \cdot b \cdot c)+(a \cdot b \cdot c)
$$

- Actually, it can be simpler $C O=(a \cdot b)+(b \cdot c)+(c \cdot a)$

CarryOut

1-Bit Adder

Delay

- Hardware has delays.
- Delay is defined as the time since the input is stable to the time when the output is stable.
- How much more delay does the one-bit full adder take, when compared to the one-bit half adder?

32-bit adder

- How to get the 32-bit adder used in MIPS?

32-bit adder

