Digital Circuits

Review – Getting the truth table

- The first step in designing a digital circuit usually is to get the truth table.
- That is, for every input combination, figure out what an output bit should be, and write them down in a table.

Review – From the truth table to circuits

- Any truth table can be translated into a circuits consisting of several **and** gates followed by one **or** gate.
 - It means that any function can be implemented in this way
- Call a row in the truth table in which the output is `1' a ``true row" and the input combination in this row a ``true input combination" or just a ``true combination."
- Each **and** gate corresponds to one ``true row'' in the truth table. The **and** gate should output a `1' if and only if the input combination is the same as this row. If all other cases, the output of this **and** gate is `0.'
 - So, whenever the input combination is the same as one of the ``true combinations," one of the and gates outputs ``1", so the output of the or gate is 1.
 - If the input combination is not the same as any of the ``true combinations," none of the and gates will output a ``1", so the output of the or gate is 0.

Logic Functions

- Drawing circuits is ... Usually we express logic functions using logic equations which are more succinct and carry the same information
 - The OR operator is written as +, as in A + B.
 - The AND operator is written as \cdot , as A \cdot B.
 - The unary operator NOT is written as \overline{A} or A'.
- Remember: This is NOT the binary field. Here 0+0=0, 0+1=1+0=1, 1+1=1.

Logic functions

• For example, the sum in the one-bit full adder is

 $Sum = (a \cdot \overline{b} \cdot \overline{CarryIn}) + (\overline{a} \cdot b \cdot \overline{CarryIn}) + (\overline{a} \cdot \overline{b} \cdot CarryIn) + (a \cdot b \cdot CarryIn)$

- From a logic function you can immediately know what the circuit looks like.
- Truth table == Circuits == Logic function, equivalent.
- So we are going to get familiar with getting the logic functions from the truth table

Problems

 Ex 1. Assume that X consists of 3 bits, x2 x1 x0.
 Write a logic function that is true if and only if X contains only one 0

EX 1

X2	X1	X0	output
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

EX 1

X2	X1	X0	output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

• Output = $x^2x^1x^0 + x^2x^1x^0 + x^2x^1x^0$

Assume that X consists of 3 bits, x2 x1 x0.
 Write a logic functions that is true if and only if X contains an even number of 0s.

EX 2

X2	X1	X0	output
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

EX 2

X2	X1	X0	output
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Output = x2x1'x0' + x2'x1'x0 + x2'x1x0'+
 x2x1x0

Assume that X consists of 3 bits, x2 x1 x0.
 Write a logic functions that is true if and only if X when interpreted as an unsigned binary number is no less than 5.

X2	X1	X0	output
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

X2	X1	X0	output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

• Output = x2x1'x0 + x2x1x0' + x2x1x0

The Karnaugh Map

Simplifying Digital Circuits

• Reconsider the 1-bit full adder. The carry bit is

$$CO = (a \cdot b \cdot \overline{c}) + (a \cdot \overline{b} \cdot c) + (\overline{a} \cdot b \cdot c) + (a \cdot b \cdot c)$$

• But we can implement the function with a much simpler circuit:

 $CO = (a \cdot b) + (b \cdot c) + (c \cdot a)$

• How to get there?

Simplifying digital circuit

- There are many methods.
 - Using boolean algebra
 - Using K-map
 - By just being really smart...

Boolean Algebra Laws

- Identity Law:
 - A + 0 = A
 - A * 1 = A
- Zero and One Laws:
 - -A + 1 = 1
 - A * 0 = 0
- Inverse Laws:
 - A + A = 1
 - $A^* A = 0$
- A * A = A

- Commutative Laws:
 - -A+B=B+A
 - A * B = B * A
- Associative Laws:
 - A + (B + C) = (A + B) + C
 - A * (B * C) = (A * B) * C
- Distributive Laws:
 A * (B+C) = (A*B) + (A*C)
 A + (B*C) = (A+B) * (A+C)
- A + A = A

Boolean Algebra

- To use Boolean algebra, note that CO= abc' + ab'c + a'bc + abc
- Now,
 - abc'+abc=ab(c'+c)=ab.
 - ab'c+abc=ac(b'+b)=ac
 - a'bc+abc=bc(a'+a)=bc
 - We used term abc three times because abc=abc+abc+abc!

- It is actually more convenient to use K-map to simplify digital circuits.
- K-map is a very mechanical procedure. Nothing fancy.
- It basically uses two rules: A+A=A, and AB+AB'=A.

K-map rules

- Draw the K-map. Remember to make sure that the adjacent rows/columns differ by only one bit.
- According to the truth table, write 1 in the boxes.
- Draw a circle around a rectangle with all 1s. The rectangle must have size 1,2,4,8,16...Then, reduce the terms by writing down the variables whose values do not change.
 - For example, if there is a rectangle with two 1s representing ab'c' and ab'c, you write a term as ab'.
- Note that
 - A term may be covered in multiple circles!
 - The rectangle can wrap-around!
- Simplify to the simplest circuits possible:
 - The circle should be as large as possible.
 - Try to get the minimum number of circles, i.e., minimum number of terms in the equation.

• F=a'bc'+a'bc+abc'+abc+a'b'c

• F=a'bc'+a'bc+abc'+abc+a'b'c

• F=a'bc'd+a'bcd+abc'd+abcd+a'b'c'd+abcd'

• F=a'bc'd+a'bcd+abc'd+abcd+a'b'c'd+abcd'

• F=bd+a'c'd+abc