
Digital Circuits

Review – Getting the truth table

• The first step in designing a digital circuit
usually is to get the truth table.

• That is, for every input combination, figure
out what an output bit should be, and write
them down in a table.

Review – From the truth table to
circuits

• Any truth table can be translated into a circuits consisting of several and
gates followed by one or gate.
– It means that any function can be implemented in this way

• Call a row in the truth table in which the output is `1’ a ``true row’’ and the
input combination in this row a ``true input combination’’ or just a ``true
combination.’’

• Each and gate corresponds to one ``true row’’ in the truth table. The and
gate should output a `1’ if and only if the input combination is the same as
this row. If all other cases, the output of this and gate is `0.’
– So, whenever the input combination is the same as one of the ``true combinations,’’ one

of the and gates outputs ``1’’, so the output of the or gate is 1.

– If the input combination is not the same as any of the ``true combinations,’’ none of the
and gates will output a ``1’’, so the output of the or gate is 0.

4

Logic Functions

• Drawing circuits is … Usually we express logic
functions using logic equations which are more
succinct and carry the same information

– The OR operator is written as +, as in A + B.

– The AND operator is written as ·, as A · B.

– The unary operator NOT is written as or A’.

• Remember: This is NOT the binary field. Here 0+0=0,
0+1=1+0=1, 1+1=1.

Logic functions

• For example, the sum in the one-bit full adder
is

• From a logic function you can immediately
know what the circuit looks like.

• Truth table == Circuits == Logic function,
equivalent.

• So we are going to get familiar with getting
the logic functions from the truth table

Problems

• Ex 1. Assume that X consists of 3 bits, x2 x1 x0.
Write a logic function that is true if and only if
X contains only one 0

EX 1

X2 X1 X0 output

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

EX 1

X2 X1 X0 output

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

Ex 1

• Output = x2x1x0’ + x2x1’x0 + x2’x1x0

Ex 2

• Assume that X consists of 3 bits, x2 x1 x0.
Write a logic functions that is true if and only
if X contains an even number of 0s.

EX 2

X2 X1 X0 output

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

EX 2

X2 X1 X0 output

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Ex 2

• Output = x2x1’x0’ + x2’x1’x0 + x2’x1x0’+
x2x1x0

Ex 3

• Assume that X consists of 3 bits, x2 x1 x0.
Write a logic functions that is true if and only
if X when interpreted as an unsigned binary
number is no less than 5.

Ex 3

X2 X1 X0 output

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Ex 3

X2 X1 X0 output

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Ex 3

• Output = x2x1’x0 + x2x1x0’+ x2x1x0

The Karnaugh Map

Simplifying Digital Circuits

• Reconsider the 1-bit full adder. The carry bit is

• But we can implement the function with a
much simpler circuit:

• How to get there?

Simplifying digital circuit

• There are many methods.

– Using boolean algebra

– Using K-map

– By just being really smart…

Boolean Algebra Laws

• Identity Law:

– A + 0 = A

– A * 1 = A

• Zero and One Laws:

– A + 1 = 1

– A * 0 = 0

• Inverse Laws:

– A + A = 1

– A* A = 0

• A * A = A

• Commutative Laws:

– A + B = B + A

– A * B = B * A

• Associative Laws:

– A + (B + C) = (A + B) + C

– A * (B * C) = (A * B) * C

• Distributive Laws:

– A * (B+C) = (A*B) + (A*C)

– A + (B*C) = (A+B) * (A+C)

• A + A = A
21

Boolean Algebra

• To use Boolean algebra, note that CO= abc’ +
ab’c + a’bc + abc

• Now,

– abc’+abc=ab(c’+c)=ab.

– ab’c+abc=ac(b’+b)=ac

– a’bc+abc=bc(a’+a)=bc

– We used term abc three times because
abc=abc+abc+abc!

K-map

• It is actually more convenient to use K-map to
simplify digital circuits.

• K-map is a very mechanical procedure.
Nothing fancy.

• It basically uses two rules: A+A=A, and
AB+AB’=A.

K-map

• K-map

• CO = ab + ac + bc

0 0 1 0

0 1 1 1

00 01 11 10

0

1

ab
c

K-map rules

• Draw the K-map. Remember to make sure that the adjacent
rows/columns differ by only one bit.

• According to the truth table, write 1 in the boxes.
• Draw a circle around a rectangle with all 1s. The rectangle must

have size 1,2,4,8,16…Then, reduce the terms by writing down the
variables whose values do not change.
• For example, if there is a rectangle with two 1s representing ab’c’ and

ab’c, you write a term as ab’.

• Note that
• A term may be covered in multiple circles!
• The rectangle can wrap-around!

• Simplify to the simplest circuits possible:
• The circle should be as large as possible.
• Try to get the minimum number of circles, i.e., minimum number of

terms in the equation.

K-map

• F=a’bc’+a’bc+a’b’c+ab’c

0 1 0 0

1 1 0 1

00 01 11 10

0

1

ab
c

K-map

• F=a’bc’+a’bc+a’b’c+ab’c

• F=a’b+b’c

0 1 0 0

1 1 0 1

00 01 11 10

0

1

ab
c

K-map

• F=a’bc’+a’bc+abc’+abc+a’b’c

0 1 1 0

1 1 1

00 01 11 10

0

1

ab
c

K-map

• F=a’bc’+a’bc+abc’+abc+a’b’c

• F=b+a’c

0 1 1 0

1 1 1

00 01 11 10

0

1

ab
c

K-map

• F=a’bc’d+a’bcd+abc’d+abcd+a’b’c’d+abcd’

1 1 1

1 1

1

00 01 11 10

00

01

ab
cd

11

10

K-map

• F=a’bc’d+a’bcd+abc’d+abcd+a’b’c’d+abcd’

• F=bd+a’c’d+abc

1 1 1

1 1

1

00 01 11 10

00

01

ab
cd

11

10

