Digital Circuits

Review - Getting the truth table

- The first step in designing a digital circuit usually is to get the truth table.
- That is, for every input combination, figure out what an output bit should be, and write them down in a table.

Review - From the truth table to circuits

- Any truth table can be translated into a circuits consisting of several and gates followed by one or gate.
- It means that any function can be implemented in this way
- Call a row in the truth table in which the output is ' 1 ' a "true row" and the input combination in this row a "true input combination" or just a "true combination."
- Each and gate corresponds to one "true row" in the truth table. The and gate should output a ' 1 ' if and only if the input combination is the same as this row. If all other cases, the output of this and gate is ' 0 .'
- So, whenever the input combination is the same as one of the "true combinations," one of the and gates outputs " 1 ", so the output of the or gate is 1 .
- If the input combination is not the same as any of the "true combinations," none of the and gates will output a " 1 ", so the output of the or gate is 0 .

Logic Functions

- Drawing circuits is ... Usually we express logic functions using logic equations which are more succinct and carry the same information
- The OR operator is written as + , as in $A+B$.
- The AND operator is written as \cdot, as A • B.
- The unary operator NOT is written as \bar{A} or A^{\prime}.
- Remember: This is NOT the binary field. Here 0+0=0, $0+1=1+0=1,1+1=1$.

Logic functions

- For example, the sum in the one-bit full adder is
Sum $=(a \cdot \bar{b} \cdot \overline{\text { CarryIn }})+(\bar{a} \cdot b \cdot \overline{\text { CarryIn }})+(\bar{a} \cdot \bar{b} \cdot$ CarryIn $)+(a \cdot b \cdot$ CarryIn $)$
- From a logic function you can immediately know what the circuit looks like.
- Truth table == Circuits == Logic function, equivalent.
- So we are going to get familiar with getting the logic functions from the truth table

Problems

- Ex 1. Assume that X consists of 3 bits, $\mathrm{x} 2 \times 1 \times 0$. Write a logic function that is true if and only if X contains only one 0

EX 1

X2	X1	X0	output
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

EX 1

X2	X1	X0	output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Ex 1

- Output $=x 2 x 1 x 0^{\prime}+x 2 x 1^{\prime} x 0+x 2^{\prime} x 1 x 0$

Ex 2

- Assume that X consists of 3 bits, $\mathrm{x} 2 \times 1 \times 0$. Write a logic functions that is true if and only if X contains an even number of O s.

EX 2

X2	X1	X0	output
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

EX 2

X2	X1	X0	output
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Ex 2

- Output $=x 2 x 1^{\prime} x 0^{\prime}+x 2^{\prime} x 1^{\prime} x 0+x 2^{\prime} x 1 x 0^{\prime}+$ $\times 2 \times 1 \times 0$

Ex 3

- Assume that X consists of 3 bits, $\mathrm{x} 2 \times 1 \times 0$. Write a logic functions that is true if and only if X when interpreted as an unsigned binary number is no less than 5.

Ex 3

X2	X1	X0	output
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Ex 3

X2	X1	X0	output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Ex 3

- Output $=x 2 x 1^{\prime} x 0+x 2 x 1 x 0^{\prime}+x 2 x 1 x 0$

The Karnaugh Map

Simplifying Digital Circuits

- Reconsider the 1-bit full adder. The carry bit is

$$
C O=(a \cdot b \cdot \bar{c})+(a \cdot \bar{b} \cdot c)+(\bar{a} \cdot b \cdot c)+(a \cdot b \cdot c)
$$

- But we can implement the function with a much simpler circuit:

$$
C O=(a \cdot b)+(b \cdot c)+(c \cdot a)
$$

- How to get there?

Simplifying digital circuit

- There are many methods.
- Using boolean algebra
- Using K-map
- By just being really smart...

Boolean Algebra Laws

- Identity Law:

$$
\begin{aligned}
& -A+0=A \\
& -A * 1=A
\end{aligned}
$$

- Zero and One Laws:

$$
\begin{aligned}
& -A+1=1 \\
& -A * 0=0
\end{aligned}
$$

- Inverse Laws:

$$
\begin{aligned}
& -A+A=1 \\
& -A * A=0
\end{aligned}
$$

- $A^{*} A=A$
- Commutative Laws:

$$
\begin{aligned}
& -A+B=B+A \\
& -A * B=B * A
\end{aligned}
$$

- Associative Laws:

$$
\begin{aligned}
& -A+(B+C)=(A+B)+C \\
& -A *(B * C)=(A * B) * C
\end{aligned}
$$

- Distributive Laws:
$-A^{*}(B+C)=\left(A^{*} B\right)+\left(A^{*} C\right)$
$-A+\left(B^{*} C\right)=(A+B) *(A+C)$
- $A+A=A$

Boolean Algebra

- To use Boolean algebra, note that $\mathrm{CO}=\mathrm{abc}+$ $a b ’ c+a \prime b c+a b c$
- Now,
$-a b c^{\prime}+a b c=a b\left(c^{\prime}+c\right)=a b$.
$-a b^{\prime} c+a b c=a c\left(b^{\prime}+b\right)=a c$
$-a^{\prime} b c+a b c=b c\left(a^{\prime}+a\right)=b c$
- We used term abc three times because $a b c=a b c+a b c+a b c!$

K-map

- It is actually more convenient to use K-map to simplify digital circuits.
- K-map is a very mechanical procedure. Nothing fancy.
- It basically uses two rules: $A+A=A$, and $A B+A B^{\prime}=A$.

K-map

- K-map
c
$c^{a b}$
0
1
1
CO
CO
0

K-map rules

- Draw the K-map. Remember to make sure that the adjacent rows/columns differ by only one bit.
- According to the truth table, write 1 in the boxes.
- Draw a circle around a rectangle with all 1s. The rectangle must have size $1,2,4,8,16$...Then, reduce the terms by writing down the variables whose values do not change.
- For example, if there is a rectangle with two 1 s representing ab'c' and ab'c, you write a term as ab'.
- Note that
- A term may be covered in multiple circles!
- The rectangle can wrap-around!
- Simplify to the simplest circuits possible:
- The circle should be as large as possible.
- Try to get the minimum number of circles, i.e., minimum number of terms in the equation.

K-map

- $F=a^{\prime} b c^{\prime}+a^{\prime} b c+a^{\prime} b^{\prime} c+a b^{\prime} c$ c 00

01
11
10
$\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}$

| 1 |
| :--- | :--- |
| 1 |

| 0 |
| :--- | :--- |
| 0 |

K-map

- $F=a^{\prime} b c^{\prime}+a^{\prime} b c+a^{\prime} b^{\prime} c+a b^{\prime} c$

K-map

- $F=a^{\prime} b c^{\prime}+a^{\prime} b c+a b c^{\prime}+a b c+a^{\prime} b^{\prime} c$ c 00

01
1110

0	0	1	1	0
1	1	1	1	

K-map

- $F=a^{\prime} b c^{\prime}+a^{\prime} b c+a b c^{\prime}+a b c+a^{\prime} b^{\prime} c$

K-map

- $F=a^{\prime} b c^{\prime} d+a^{\prime} b c d+a b c c^{\prime} d+a b c d+a^{\prime} b^{\prime} c^{\prime} d+a b c d^{\prime}$

K-map

- $F=a^{\prime} b c^{\prime} d+a^{\prime} b c d+a b c c^{\prime} d+a b c d+a^{\prime} b^{\prime} c^{\prime} d+a b c d^{\prime}$

- F=bd+a'c'd+abc

