
MIPS ALU

Review

• Steps to writing (stateless) circuits:

– Create a truth table

• Go through all different combinations of inputs

• For each row, generate each output based on the
problem description

– Create a logic function (one per output)

• Use only output rows that are ‘true’

• Use inversion if the input is 0

• And all of the inputs on a row

• Or all of the rows

Review

• Steps to writing (stateless) circuits:

– K-map (one per logic function)

• Split half of your inputs and label them as columns and
the other half as rows

• Make your labels differ by 1 bit across columns/rows

• Plot ‘true’ outputs in cells

• Draw circles around cells in powers of two

• Minimize number of circles

• Maximize the size of the circle

Review

• Steps to writing (stateless) circuits:

– Recreate logic function (one per K-map)

• Again, use inversion if the input is a 0

• And together the constant (not changing) inputs in a
given circle

• Or together the results from each circle

In-Class Exercise 4-1 Question

• Assuming that X consists of 3 bits – x2, x1, x0 –
write a logic function that is true if and only if
X when interpreted as an unsigned binary
integer is less than 4

In-Class Exercise 4-1 Answer

X2 X1 X0 O

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

In-Class Exercise 4-1 Answer

X2 X1 X0 O

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

O = X2’X1’X0’ + X2’X1’X0 + X2’X1X0’ + X2’X1X0

In-Class Exercise 4-1 Answer

00 01 11 10

0 1 1

1 1 1

O = X2’X1’X0’ + X2’X1’X0 + X2’X1X0’ + X2’X1X0

X2X1

X0

In-Class Exercise 4-1 Answer

00 01 11 10

0 1 1

1 1 1

O = X2’

X2X1

X0

In-Class Exercise 4-2 Question

• Assuming that X consists of 3 bits – x2, x1, x0 –
write a logic function that is true if and only if
X when interpreted as an unsigned binary
integer is odd

In-Class Exercise 4-2 Answer

X2 X1 X0 O

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

In-Class Exercise 4-2 Answer

X2 X1 X0 O

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

O =X2’X1’X0 + X2’X1X0 + X2X1’X0 + X2X1X0

In-Class Exercise 4-2 Answer

00 01 11 10

0

1 1 1 1 1

X2X1

X0

O =X2’X1’X0 + X2’X1X0 + X2X1’X0 + X2X1X0

In-Class Exercise 4-2 Answer

00 01 11 10

0

1 1 1 1 1

O = X0

X2X1

X0

Exercise – Design a selector?

• I need a circuit that takes two input bits, a and
b, and a selector bit s. The function output, f,
is:

– if s=0, f=a

– if s=1, f=b.

Selector

s a b f

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Selector

s a b f

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

K-map

• F=s’ab’+s’ab+sa’b+sab

1 1

1 1

00 01 11 10

0

1

ab
s

K-map

• F=s’ab’+s’ab+sa’b+sab

1 1

1 1

00 01 11 10

0

1

ab
s

• F=s’a+sb

Building from the adder to ALU

• ALU – Arithmetic Logic Unit, does the major
calculations in the computer, including
– Add

– And

– Or

– Sub

– …

• In MIPS, the ALU takes two 32-bit inputs and produces
one 32-bit output, plus some additional signals

• Add is only one of the functions, and in this lecture, we
are going to see how an full ALU is designed

ALU

Review

• 1-bit full adder

32-bit adder

Building 32-bit ALU with 1-bit ALU

• Build 32-bit ALU with 1-bit ALU.

• Deal with the easy ones first – “and” and “or”

And and Or operations

• And

a

b
And result

• Or

a

b
Or result

Putting them together

• Sometimes the instruction is add, sometimes
it is or, sometimes is and, how to “put them
together?”

• In MIPS instructions, there are many fields:
op, funct, rs, rt, rd, shamt…

Putting them together

• Just do everything
(add, and, or) and
then select one AS
the output with a
selector.

Subtraction?

• How to implement subtraction?

29

Subtraction
• Using two’s complement representation, we

can implement subtraction through addition

• The reason is that a negative number -b in
2’s complement is actually 2n-b. So if you do
a+2n-b and take only the lower n bits, it
becomes a-b because 2n is a one bit at bit n
(bit indices are 0,1,2,…, n-1, n).

• What do we need to add to the ALU we have
in order to be able to perform subtraction?

30

1-Bit ALU That can Do Subtraction

• To do a-b, three things:

1. Invert every bit of b.

2. Add 1.

3. Add with a.

• So, if it is a subtraction,
invert the second operand,
set the CarryIn of the last
one-bit full adder to be 1,
then select the adder
output.

Subtraction

• Notice that every time we want the ALU to
subtract, we set both CarryIn and Binvert to 1.
For add or logical operations, we want both
control lines to be 0. We can therefore
simplify control of the ALU by combining the
CarryIn and Binvert to a single control line
called Bnegate.

32

Supporting Branch Instructions

• We need to be able to test if two numbers are the
same

33

Supporting Set Less Than

• Set less than instruction produces 1 if rs < rt,
and 0 otherwise

– It needs to set all but the least significant bit to 0

– The least significant bit is set according to the
comparison

• Which can be done using subtraction

• That is, do a subtraction, check the sign bit (bit 31).

34

Complication

• If we only use the sign bit of the adder, sometimes we
will be wrong

– For the following example (using 4 bits only), we have

– Then we have , which is clearly wrong
tenten

67 

Overflow

• The problem is that sometimes we have
overflow.

– If we have only 4 bits, a number greater than 7 or
a number less than -8 will cause an overflow
because it cannot be represented in 4 bits.

– In the previous example, -7-6=-13, overflowed.

Dealing with overflow

• Overflow happens when the two numbers are
of the same sign.

– If they are of different signs, the addition result
will be less than the larger one (the absolute
value) and should be still within the range,
assuming the two original numbers are within the
range.

37

Overflow Detection

One way to detect overflow is to check whether the sign bit is
consistent with the sign of the inputs when the two inputs are of the
same sign – if you added two positive numbers and got a negative
number, something is wrong, and vice versa.

Dealing with overflow

• For two positive numbers, after the addition,

– The carryout of ALU31 must be 0, because in 2’s
complement, positive numbers go from 000…1 to
011..1. The largest number is 011…1 and adding
two 011…1 will lead to 111…10, the carry out is
still 0.

– if no overflow, the sign bit (bit 31) should be 0,
because the result is a positive number.

– If overflowed, the sign bit (bit 31) will be 1, caused
by a carryin to ALU31.

Dealing with overflow

• For two negative numbers, after the addition,

– The carryout of ALU31 must be 1, because in 2’s
complement, negative numbers go from 100…0 to
111..1. Even if you are just adding two 100…0, you
will have 1000…00, the carry out is 1.

– if no overflow, the sign bit (bit 31) should be 1,
because the result is a negative number.

– If overflowed, the sign bit (bit 31) will be 0, caused
by having no carryin to ALU31.

40

Overflow Detection
• So, we can detect the overflow by checking if the

CarryIn and CarryOut of the most significant bit are
different

41

Overflow
• The sign bit is correct if there is no overflow

• If there is overflow, the sign bit will be wrong and
needs to be inverted

42

32-bit ALU that Supports Set Less Than

Final
32-Bit
ALU

44

Final 32-Bit ALU

• ALU control lines are 1-bit Ainvert line, 1-bit
Bnegate line, and 2-bit operation lines

45

ALU Symbol

