
Introduction to Verilog

Structure of a Verilog Program

• A Verilog program is structured as a set of modules, which may
represent anything from a collection of logic gates to a complete
system.

• A module specifies its input and output ports, which describe the
incoming and outgoing connections of a module.

• A module may also declare additional variables.
• The body of a module consists of

– initial constructs, which can initialize reg variables
– continuous assignments, which define only combinational logic
– always constructs, which can define either sequential or

combinational logic
– instances of other modules, which are used to implement the module

being defined

Key things to remember

• A module in Verilog is NOT a function in software.

– A function is a piece of code that can be called.

– A module defines a functionality. A module can be
USED, NOT CALLED. Once you use a module, a
physical piece of hardware will be allocated in the
chip. If you use a module twice, there will be two
pieces of such hardware.

• Verilog is a Hardware Description Language.

– You describe what you need.

Data Types

• A wire specifies a combinational signal.

– Think of it as an actual wire.

• A reg (register) holds a value.

– A reg need not necessarily correspond to an
actual register in an implementation, although it
often will.

Constants

• Constants are represented by prefixing the
value with a decimal number specifying its
size in bits.

• For example:

– 4’b0100 specifies a 4-bit binary constant with the
value 4, as does 4’d4.

Values

• The possible values for a register or wire in
Verilog are

– 0 or 1, representing logical false or true

– x, representing unknown, the initial value given to
all registers and to any wire not connected to
something

– z, representing the high-impedance state for
tristate gates

Operators

• Verilog provides the full set of unary and
binary operators from C, including

– the arithmetic operators (+, –, *, /),

– the logical operators (&, |, ^, ~),

– the comparison operators (==, !=, >, <, <=, >=),

– the shift operators (<<, >>)

– Conditional operator (?, which is used in the form
condition ? expr1 :expr2 and returns expr1 if the
condition is true and expr2 if it is false).

The half-adder. Example of continuous
assignments

module half_adder (A,B,Sum,Carry);

 input A,B;

 output Sum, Carry;

 assign Sum = A ^ B;

 assign Carry = A & B;

endmodule

• assign: continuous assignments. Any change

in the input is reflected immediately in the
output.

• Wires may be assigned values only with
continuous assignments.

Behavioral description – The always
block

module two_one_Selector (A,B,Sel,O);
 input A,B,Sel;
 output reg O;

 always @(A, B, Sel)
 if (Sel == 0)
 O <= A;
 else
 O <= B;
endmodule

always

• always @(A, B, Sel) – means that the block is
reevaluated every time any one of the signals
in the list changes value

• NOT A FUNCTION CALL

• If no sensitive list, always evaluated

• Always keep in mind that it is used to describe
the behavior of a piece of hardware you wish
to design. Basically, it is used to tell Verilog
what kind of gates should be used.

Always block continued

• Only reg variables can be assigned values in
the always block – output reg O;

• When we want to describe combinational
logic using an always block, care must be
taken to ensure that the reg does not
synthesize into a register.

https://www.altera.com/support/software/download/altera_design/quartus_we/dnl-quartus_we.jsp

Always continued

• reg variables can be assigned values in the
always block in two ways:

– ``=’’ the blocking assignment. Just like C. The
assignment will be carried out one-by-one. One
thing does not happen until the one before it
happens. This is the behavior of the circuit!

– ``<=’’ the nonblocking assignment. All assignment
happen at the same time.

A Sample Verilog code
module half_adder (A,B,Sum,Carry);

 input A,B;

 output Sum, Carry;

 assign Sum = A ^ B;

 assign Carry = A & B;

endmodule

module two_one_Selector (A,B,Sel,O);

 input A,B,Sel;

 output reg O;

 //output O;

 always @(A, B, Sel)

 if (Sel == 0)

 O <= A;

 else

 O <= B;

endmodule

module half_adder_test_bench ();

 wire A,B,S,C,Sel,O;

 reg osc;

 initial begin

 osc = 0;

 end

 always begin

 #10 osc = ~osc;

 End

 assign A=1;

 assign B=0;

 assign Sel=osc;

 half_adder A1(A, B, S, C);

 two_one_Selector S1(A,B,Sel,O);

endmodule

One-bit Full Adder

module full_adder (A,B,Cin,Sum, Cout);

 input A,B,Cin;

 output Sum, Cout;

 assign Sum = (A & B & Cin) | (~A & ~B & Cin) | (~A & B & ~Cin) | (A & ~B & ~Cin);

 assign Cout = (A & Cin) | (A & B) | (B & Cin);

endmodule

Four-bit Adder
module four_bit_adder (A,B,Cin,Sum, Cout);

 input [3:0] A;

 input [3:0] B;

 input Cin;

 output [3:0] Sum;

 output Cout;

 wire C0, C1, C2;

 full_adder FA1(A[0], B[0], Cin, Sum[0], C0);

 full_adder FA2(A[1], B[1], C0, Sum[1], C1);

 full_adder FA3(A[2], B[2], C1, Sum[2], C2);

 full_adder FA4(A[3], B[3], C2, Sum[3], Cout);

endmodule

MIPS ALU
module MIPSALU (ALUctl, A, B, ALUOut, Zero);

 input [3:0] ALUctl;

 input [31:0] A,B;

 output reg [31:0] ALUOut;

 output Zero;

 assign Zero = (ALUOut==0); //Zero is true if ALUOut is 0; goes anywhere

 always @(ALUctl, A, B) //reevaluate if these change

 case (ALUctl)

 0: ALUOut <= A & B;

 1: ALUOut <= A | B;

 2: ALUOut <= A + B;

 6: ALUOut <= A - B;

 7: ALUOut <= A < B ? 1:0;

 12: ALUOut <= ~(A | B); // result is nor

 default: ALUOut <= 0; //default to 0, should not happen;

 endcase

endmodule

Instructions about the Verilog
Simulator

 • You may download and install Altera ModelSim by first going to page:
https://www.altera.com/download/sw/dnl-sw-index.jsp

 then, under the select software tab, download a version of “ModelSim-Altera Starter
Edition.” I’m using “10.1d for Quartus II v13.0 for Windows. The file is 800MB and took me
around 15 minutes to download.

To run a simulation, for v13.0, you may
– Open your Verilog file.

– In the menu bar, click “Compile.” In the drop-down menu, click “Compile.” A dialogue window should pop-up. Click
the “Compile” button. If there is no problem with your code, the compile should pass, and then you should click the
“Done” button to close the dialogue window.

– In the menu bar, click “Simulate.” In the drop-down menu, click “Start Simulation.” A dialogue window should pop-up.
There should be a list showing up in the window. Click on the “+” sign on “work” which is the first item in the list. Click
on “test_bench.” Then click the “OK” button. The dialogue should disappear.

– After a little while, maybe 1 second, left click on “test_bench” in the “work space” window to select it, then right
click. In the menu, select “Add”, then “To Wave,” then “All items in region.”

– There will be a new window waveform popping up. First, find the box showing “100 ps” and change it to “1000 ps.”
Then click the run simulation sign right next to the box. The waveform should be ready!

https://www.altera.com/download/dnl-index.jsp
https://www.altera.com/download/dnl-index.jsp
https://www.altera.com/download/dnl-index.jsp
https://www.altera.com/download/dnl-index.jsp
https://www.altera.com/download/dnl-index.jsp

Midterm

Midterm

• Grades:

– A: 3

– B: 2

– C: 2

– D: 3

– F: 13

• Stats:

– Mean: 54

– Median: 51

– Standard Deviation: 21

• Letter Ranges

– A: 85<= S

– B: 73<=S<85

– C: 64<=S<73

– D: 57<=S<64

– F: S<57

Midterm

• I scaled the grades by 24 points. You can think
of it as:

– Drop two short answer questions and half of a
multiple choice question

– Drop three multiple choice questions

• To determine your grade, look at the number
on your exam and add 24

