
Finite State Machines

Review

• How to implement a “counter”, which will
count as 0,3,1,4,5,7,0,3,1,……

Q2 Q1 Q0 D2 D1 D0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Review

• How to implement a “counter”, which will
count as 0,3,1,4,5,7,0,3,1,……

Q2 Q1 Q0 D2 D1 D0

0 0 0 0 1 1

0 0 1 1 0 0

0 1 0

0 1 1 0 0 1

1 0 0 1 0 1

1 0 1 1 1 1

1 1 0

1 1 1 0 0 0

Review

• How to implement a “counter”, which will
count as 0,3,1,4,5,7,0,3,1,……

Q2 Q1 Q0 D2 D1 D0

0 0 0 0 1 1

0 0 1 1 0 0

0 1 0 X X X

0 1 1 0 0 1

1 0 0 1 0 1

1 0 1 1 1 1

1 1 0 X X X

1 1 1 0 0 0

Review

1 1

1 1

00 01 11 10

0

1

Q0
Q2Q1

• D0 =

= (~Q1 & ~Q0) | (Q2 & ~Q1) | (~Q2 & Q1 & Q0)

Review

1

1

00 01 11 10

0

1

Q0
Q2Q1

• D1 =

 = (~Q2 & ~Q1 & ~Q0) | (Q2 & ~Q1 & Q0)

 = ~Q1 & ~(Q2 ^ Q0)

Review

1

1 1

00 01 11 10

0

1

Q0
Q2Q1

• D2 =

 = (Q2 & ~Q1) | (~Q1 & Q0)

Parity checking

• Design a parity checking circuit that has one input X,
and one output O.

• X may change every clock cycle. The change happens at
the falling edge.

• The circuit samples the input at every rising edge of the
clock. If the input is 1, consider as read a 1, else read a
0.

• O is 1 if all the bits read so far contains an odd number
of 1s and 0 otherwise.

Parity checking

• Note that the output of the circuit depends on
ALL past inputs.

• So one possible implementation is to
remember all past inputs.

• Obviously bad…

Parity checking

• A better implementation is to “summarize” the past inputs into some
“states.” For what we are concerned about,

– Knowing the current state, the value of the output can be uniquely
determined.

– Given the current state, the future state transition does not depend on
the past inputs.

• Note that

– The states are just some binary numbers.

– The number of states is significantly less than the number of input
combinations, so we have a better circuit.

The difference from the counters

• Counters also have states. For example, the state of
the 3-bit counters are 0,1,2,3,4,5,6,7.

• But counters have only the clk input, and is driven
only by the clk. Knowing what the current state is, we
know exactly what the next state should be.

• Here, obviously, the next state also depends on the
input X.

• So we are moving to a more sophisticated example.

States

• Finding out what the states should be is a bit
of art.

• Problems are different, so the solutions are
also different.

• Experience will help.

• What should the states of the parity checking
circuit be?

State

• The state is the parity of the bits read so far.

• Two states: S0 and S1.

– S0: the bits have parity 0.

– S1: the bits have parity 1.

State Diagram

• The state transition diagram.

– Draw a circle around the
state.

– Draw arrows from one state
to another.

– Beside the arrows, show
the values of the inputs
that caused this transition.

S0 S1

X = 1

X = 0

X=1

X=0

X=1

X=0

Assign states

• Need to assign binary number representations
to the states.

• Only one bit is needed. Let S0=0, S1=1.

Next State Function

Q X D

0 0 0

0 1 1

1 0 1

1 1 0

D = Q^X

Output function

• The circuit should generate the output.

• Clearly, the output function is O=Q.

Another FSM example – A sequence
detector

• One input X, and one output O.

• X may change every clock cycle. The change
happens at the falling edge.

• The circuit samples the input at every rising
edge of the clock. If the input is 1, consider
the read a 1, else read a 0.

• O is 1 (for one clock cycle, from positive edge
to positive edge) if the last three bits read are
101.

Suggestions?

• Do we need to remember any states?

• What states do we need to remember?

Suggestions?

• Maybe we just connect 3 Dffs and output 1 if
Q2Q1Q0=101?

• That is, we need to remember 8 states.

• Can do better than that.

• Remember what fractions of the sequence I
have got.

4 states

• S0: got nothing.
The initial state.

• S1: got 1.

• S2: got 10.

• S3: got 101.

S0 S1

X = 1

X = 0

S2 S3

X=0
X=0

X=0

X=0

X=1

X=1

X=1

X=1

Assign states

• S0 = 00

• S1 = 01

• S2 = 10

• S3 = 11

Next State Function

Q1 Q0 X D1 D0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Next State Function

Q1 Q0 X D1 D0

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 0 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 0

1 1 1 0 1

D1 = (Q0&~X)|(Q1&~Q0&X)

D0 = X

The output function

• Clearly, O = Q1&Q0.

