Finite State Machines

Review

* How to implement a “counter”, which will
countas 0,3,1,4,5,7,0,3,1,......

@ o oo o2 loi oo
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Review

* How to implement a “counter”, which will
countas 0,3,1,4,5,7,0,3,1,......

Q@ _Jar oo b2 [Dpi___D0
0 0 1 1

0 0
0 0 1 1 0 0
0 1 0
0 1 1 0 0 1
1 0 0 1 0 1
1 0 1 1 1 1
1 1 0
1 1 1 0 0 0

Review

How to implement a “counter”, which will
countas 0,3,1,4,5,7,0,3,1,......

E_E-IE_-E-

P P B, P O O O O
R B O O LB KL O

R O Bk O Kk O KLk O
©O X » B O X = O
O X B O O X O Bk
©O X B KR r X O B

Review

=(*Ql & ~Q0) | (A2 &~Q1) | (*Q2 & Q1 & QO)

Review

= (~Q2 & ~Q1 & ~Q0) | (Q2 & ~Q1 & QO)
= ~Q1 & ~(Q2 " QO)

Review

e D2 =
Q2Q1
@ 00 01 11 10
o INNINEGNGGEGEGEEEEEEEE
1 1 1

= (Q2 &~Q1) | (~Ql1 & QO)

Parity checking

Design a parity checking circuit that has one input X,
and one output O.

X may change every clock cycle. The change happens at
the falling edge.

The circuit samples the input at every rising edge of the
clock. If the inputis 1, consider asread a 1, else read a
0.

O is 1if all the bits read so far contains an odd number
of 1s and O otherwise.

Parity checking

* Note that the output of the circuit depends on
ALL past inputs.

* So one possible implementation is to
remember all past inputs.

* Obviously bad...

Parity checking

* A better implementation is to “summarize” the past inputs into some
“states.” For what we are concerned about,

— Knowing the current state, the value of the output can be uniquely

determined.
— Given the current state, the future state transition does not depend on

the past inputs.
* Note that
— The states are just some binary numbers.

— The number of states is significantly less than the number of input
combinations, so we have a better circuit.

The difference from the counters

Counters also have states. For example, the state of
the 3-bit counters are 0,1,2,3,4,5,6,7.

But counters have only the clk input, and is driven
only by the clk. Knowing what the current state is, we
know exactly what the next state should be.

Here, obviously, the next state also depends on the
iInput X.

So we are moving to a more sophisticated example.

States

Finding out what the states should be is a bit
of art.

Problems are different, so the solutions are
also different.

Experience will help.

What should the states of the parity checking
circuit be?

State

* The state is the parity of the bits read so far.

e Two states: SO and S1.

— S0: the bits have parity 0.
— S1: the bits have parity 1.

State Diagram

* The state transition diagram.
— Draw a circle around the

> S1 state.

— Draw arrows from one state
to another.

— Beside the arrows, show
the values of the inputs
that caused this transition.

Assign states

* Need to assign binary number representations
to the states.

* Only one bit is needed. Let S0=0, S1=1.

Next State Function

0
0
1
1

O +—» O
o »r B O

D =Q"X

Output function

* The circuit should generate the output.
* Clearly, the output function is O=Q.

Another FSM example — A sequence
detector

One input X, and one output O.

X may change every clock cycle. The change
happens at the falling edge.

The circuit samples the input at every rising
edge of the clock. If the input is 1, consider
the read a 1, else read a O.

O is 1 (for one clock cycle, from positive edge
to positive edge) if the last three bits read are
101.

Suggestions?

* Do we need to remember any states?
 What states do we need to remember?

Suggestions?

Maybe we just connect 3 Dffs and output 1 if
Q2Q1Q0=101"

That is, we need to remember 8 states.
Can do better than that.

Remember what fractions of the sequence |
have got.

X=0
X=0
X=1
X=0
S3
X=1

4 states

S0 X=1 @
X=1

X=0

S2

SO: got nothing.
The initial state.

S1: got 1.
S2: got 10.
S3: got 101.

Assign states

SO =00
S1=01
S2 =10
S3=11

Next State Function

Qe [x ot 00

O «+«1 O «+ O «+H O

O O I =1 O O « «

O O O O v o «

Next State Function

R, P P P O O O O
P P O O » +» O O
~r O B O B O O
o r »r O O » O O
~ O P O B O - O

D1 = (Q0&~X) | (Q1&~Q0&X)
DO = X

The output function

* Clearly, 0 =Q1&Q0.

