Finite State Machines

Review

- How to implement a "counter", which will count as $0,3,1,4,5,7,0,3,1, \ldots . .$.

Q2	Q1	Q0	D2	D1	D0
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			
1	0				

Review

- How to implement a "counter", which will count as $0,3,1,4,5,7,0,3,1, \ldots . .$.

Q2	Q1	Q0	D2	D1	D0
0	0	0	0	1	1
0	0	1	1	0	0
0	1	0			
0	1	1	0	0	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0			
1	1	1	0	0	0

Review

- How to implement a "counter", which will count as $0,3,1,4,5,7,0,3,1, \ldots . .$.

Q2	Q1	Q0	D2	D1	D0
0	0	0	0	1	1
0	0	1	1	0	0
0	1	0	X	X	X
0	1	1	0	0	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	X	X	X
1	1	1	0	0	0

Review

- $\mathrm{DO}=$

$=(\sim \mathrm{Q} 1 \& \sim \mathrm{Q} 0)|(\mathrm{Q} 2 \& \sim \mathrm{Q} 1)|(\sim \mathrm{Q} 2 \& \mathrm{Q} 1 \& \mathrm{Q})$

Review

- D1 =

$$
\begin{aligned}
& =(\sim Q 2 \& \sim Q 1 \& \sim Q 0) \mid(Q 2 \& \sim Q 1 \& Q 0) \\
& =\sim Q 1 \& \sim(Q 2 \wedge Q 0)
\end{aligned}
$$

Review

- $\mathrm{D} 2=$

$$
=(\mathrm{Q} 2 \& \sim \mathrm{Q} 1) \mid(\sim \mathrm{Q} 1 \& \mathrm{Q} 0)
$$

Parity checking

- Design a parity checking circuit that has one input X, and one output 0 .
- X may change every clock cycle. The change happens at the falling edge.
- The circuit samples the input at every rising edge of the clock. If the input is 1 , consider as read a 1 , else read a 0.
- O is 1 if all the bits read so far contains an odd number of 1 s and 0 otherwise.

Parity checking

- Note that the output of the circuit depends on ALL past inputs.
- So one possible implementation is to remember all past inputs.
- Obviously bad...

Parity checking

- A better implementation is to "summarize" the past inputs into some "states." For what we are concerned about,
- Knowing the current state, the value of the output can be uniquely determined.
- Given the current state, the future state transition does not depend on the past inputs.
- Note that
- The states are just some binary numbers.
- The number of states is significantly less than the number of input combinations, so we have a better circuit.

The difference from the counters

- Counters also have states. For example, the state of the 3 -bit counters are $0,1,2,3,4,5,6,7$.
- But counters have only the clk input, and is driven only by the clk. Knowing what the current state is, we know exactly what the next state should be.
- Here, obviously, the next state also depends on the input X.
- So we are moving to a more sophisticated example.

States

- Finding out what the states should be is a bit of art.
- Problems are different, so the solutions are also different.
- Experience will help.
- What should the states of the parity checking circuit be?

State

- The state is the parity of the bits read so far.
- Two states: S0 and S1.
- SO : the bits have parity 0 .
-S 1 : the bits have parity 1 .

State Diagram

- The state transition diagram.

- Draw a circle around the state.
- Draw arrows from one state to another.
- Beside the arrows, show the values of the inputs that caused this transition.
$\longrightarrow X=1$
$\longrightarrow X=0$

Assign states

- Need to assign binary number representations to the states.
- Only one bit is needed. Let $\mathrm{SO}=0, \mathrm{~S} 1=1$.

Next State Function

Q	X	D
0	0	0
0	1	1
1	0	1
1	1	0

$D=Q^{\wedge} X$

Output function

- The circuit should generate the output.
- Clearly, the output function is $\mathrm{O}=\mathrm{Q}$.

Another FSM example - A sequence detector

- One input X , and one output O .
- X may change every clock cycle. The change happens at the falling edge.
- The circuit samples the input at every rising edge of the clock. If the input is 1 , consider the read a 1 , else read a 0 .
- O is 1 (for one clock cycle, from positive edge to positive edge) if the last three bits read are 101.

Suggestions?

- Do we need to remember any states?
- What states do we need to remember?

Suggestions?

- Maybe we just connect 3 Dffs and output 1 if Q2Q1Q0=101?
- That is, we need to remember 8 states.
- Can do better than that.
- Remember what fractions of the sequence I have got.

4 states

- SO: got nothing.
 The initial state.
- S1: got 1 .
- S2: got 10.
- S3: got 101.

$$
\begin{aligned}
& \longrightarrow X=1 \\
& \longrightarrow X=0
\end{aligned}
$$

Assign states

- $\mathrm{SO}=00$
- $\mathrm{S} 1=01$
- $\mathrm{S} 2=10$
- $\mathrm{S} 3=11$

Next State Function

Q1	Q0	X	D1	D0
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Next State Function

Q1	Q0	X	D1	D0
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	0
1	1	1	0	1

$$
\begin{aligned}
& \mathrm{D} 1=(\mathrm{Q} 0 \& \sim \mathrm{X}) \mid(\mathrm{Q} 1 \& \sim \mathrm{Q} 0 \& \mathrm{X}) \\
& \mathrm{D} 0=\mathrm{X}
\end{aligned}
$$

The output function

- Clearly, O = Q1\&Q0.

