
Finite State Machine Continued

Combinational and Sequential Circuit

• Digital logic systems can be classified as
combinational or sequential.

– Combinational circuits can be completely described by the
truth table.

– Sequential systems contain state stored in memory
elements internal to the system. Their behavior depends
both on the set of inputs supplied and on the contents of
the internal memory, or state of the system. Thus, a
sequential system cannot be described with a truth table.
Instead, a sequential system is described as a finite-state
machine (or often just state machine).

Clock cycle

11/10/2007 11:52:10 AM week12-3.ppt 4

Finite State Machines

• A finite state machine has a set of states and
two functions called the next-state function
and the output function
– The set of states correspond to all the possible

combinations of the internal storage
• If there are n bits of storage, there are 2n possible

states

– The next state function is a combinational logic
function that given the inputs and the current
state, determines the next state of the system

11/10/2007 11:52:34 AM week12-3.ppt 5

Finite State Machines

• The output function produces a set of outputs
from the current state and the inputs
– There are two types of finite state machines

– In a Moore machine, the output only depends on
the current state

– While in a Mealy machine, the output depends
both the current state and the current input

– We are only going to deal with the Moore
machine.

– These two types are equivalent in capabilities

11/10/2007 11:55:38 AM week12-3.ppt 6

Implementing an FSM

D Q Current state

Implement
transition
functions

Inputs Outputs

Next state

11/10/2007 11:53:59 AM week12-3.ppt 7

Intelligent Traffic Controller
• We want to use a finite state

machine to control the traffic
lights at an intersection of a
north-south route and an east-
west route

– We consider only the green and
red lights

– We want the lights to change no
faster than 30 seconds in each
direction
• So we use a 0.033 Hz clock

11/10/2007 11:54:14 AM week12-3.ppt 8

Intelligent Traffic Controller

• There are two output signals

– NSlite: When the signal is asserted, the light on
the north-south route is green; otherwise, it
should be red

– EWlite: When the signal is asserted, the light on
the east-west route is green; otherwise, it should
be red

11/10/2007 11:54:22 AM week12-3.ppt 9

Intelligent Traffic Controller

• There are two inputs

– NScar: Indicates that there is at least one car that
is over the detectors placed in the roadbed in the
north-south road

– EWcar: Indicates that there is at least one car that
is over the detectors placed in the roadbed in the
east-west road

11/10/2007 11:54:32 AM week12-3.ppt 10

Intelligent Traffic Controller

• The traffic lights should only change from one
direction to the other only if there is a car
waiting in the other direction

– Otherwise, the light should continue to show
green in the same direction

11/10/2007 11:54:40 AM week12-3.ppt 11

Intelligent Traffic Controller

• Here we need two states

– NSgreen: The traffic light is green in the north-
south direction

– EWgreen: The traffic light is green in the east-west
direction

11/10/2007 11:55:01 AM week12-3.ppt 12

Graphical Representation

NSgreen EWgreen

EWCar=1, NSCar=0 or 1

NSCar=1, EWCar=0 or 1

EWCar=0, NSCar=0 or 1 NSCar=0, EWCar=0 or 1

11/10/2007 11:54:47 AM week12-3.ppt 13

Next State Function and Output Function

11/10/2007 11:55:05 AM week12-3.ppt 14

State Assignment

• We need to assign state numbers to the states

– In this case, we can assign NSgreen to state 0 and
EWgreen to state 1

– Therefore we only need 1 bit in the state register

11/10/2007 11:55:12 AM week12-3.ppt 15

Combinational Logic for Next State Function

11/15/2007 2:38:31 PM week12-5.ppt 16

Implementing Intelligent Traffic Controller

11/15/2007 2:38:32 PM week12-5.ppt 17

Four Steps to Build a Finite State Machine

• Step 1 – State diagram and state table

– There are no set procedures and diagrams.
Application dependent

– Choose a state to be the starting state when
power is turned on the first time

– A state diagram can be represented by a graph or
by a table and is easy to convert between the two

11/15/2007 2:38:32 PM week12-5.ppt 18

Four Steps to Build a Finite State Machine

• Step 2 – State assignment

– Assign a unique binary number to each state

– Rewrite the state table using the assigned number
for each state

• Step 3 – Combinational logic for next state
function and output function

• Step 4 - Implementation

FSM

• The state is updated at the edge of the clock
cycle

• The next state is computed once every clock.

20

Finite State Machine for a Vending Machine

Build a custom controller
for a vending machine.

We could use a general
purpose processor, but
we might save money
with a custom controller.

Take coins, give drinks

21

Inputs and Outputs

Inputs:

drink selectors

coin trigger

refund button

Outputs:

drink release latches

Coin refund latch

Specifications

• Sells only two kinds of drinks, A,B. (For now, assume all drinks are available
in the machine.)

• All drinks are $0.50.

• Accepts quarters only. If you put in more than $0.50, consider it as $0.50.

• Will respond to refund button. If pressed, release all quarters.

• If the current amount of money is less than $0.50

– Will not respond to select buttons.

• If the current amount of money is $0.50

– Will respond to select buttons. If SA is pressed, release drink A, if SB is
pressed, release drink B. Then, take in all the money.

Controller Outputs

• Suppose the latch to be used to build the vending machine is controlled by one bit.
It will be closed if the control signal is 0. If the control signal is 1 for a duration of
one clock cycle, it will open for a period of time sufficient to allow things stored to
fall through; after that, if the control signal is 0, it will be closed. If it is 1, it will stay
open until the control signal returns to 0.

• Controller outputs are: L_A, L_B, L_RF, L_TK. These are signals to control the
latches.

– L_A=1, the latch for drink A opens, and drink A will fall out.

– L_B=1, the latch for drink B opens, and drink B will fall out.

– L_RF=1, the latch for coin refund opens, and coins will fall out.

– L_TK = 1, the latch for coin take opens, and coins will fall from the temporarily
storing place to the inside of the machine.

– Based on the specification of the latches, we need to set the control signals to
be 1 for one clock.

Inputs

• Inputs include some buttons: SA, SB, RF.

– SA = 1 when the user is pressing the select A button, else it is 0

– SB = 1 when the user is pressing the select B button, else it is 0

– RF = 1 when the user is pressing the refund button, else it is 0

• Inputs also include CIS (coin insert). When a coin is falling in, CIS is 1 for
one clock cycle (from one falling edge to the next falling edge). It is 0 all
other time.

Design

• How to design this controller, given the
specifications and the inputs and the outputs?

• Is this a stateless controller, or a controller
with states?

State

• To tell if a controller has states or not, the
simplest way is to check if the controller’s
output is relevant to what happened in the
past. If it is relevant, it has state; otherwise it
does not.

• The vending machine controller has state,
because the controller’s response to the same
input (e.g., SA) is different depending on the
number of quarters inserted.

Identifying the States

• We need at least three states to remember
how many quarters we have got.

– S0: The initial state. Got 0 quarters.

– S1: Got 1 quarter.

– S2: Got 2 quarters.

State Diagram

S0 S1

S2

CIS = 1

State Diagram

• When got $0.50,
if the user presses
select button,
should release
drink, take
money, and go
back to state S0.

• But is this
diagram correct?

S0 S1

S2

CIS = 1

SA = 1

State Diagram

• Not complete – we
haven’t take action yet.

• When the SA is
pressed, the controller
should change some
output signal – not
shown in the diagram

S0 S1

S2

CIS = 1

SA = 1

Change the output

• The output to be
changed, clearly,
is the L_A and
L_TK.

• By the
specification, we
should let them
be 1 for one
clock cycle.

clk

L_A

SA

L_TK

Other options

• Can we just let the latch be controlled by the SA button,
meaning that the latch is open when SA is pressed?

• If we do this, I will just get free drinks.

• So the latch has to be determined by the states
somehow.

• Can we just say that the latch is open if in state S2 and
when SA is pressed?

• When in state S2, if SA is pressed, the next state is not S2
– the overlapping time may not be enough because SA
can become 1 at arbitrary time.

The Action State For SA

• To ensure that the
control signal
stays high for one
clock cycle, we
need another
state.

• In S3,
– L_A = 1

– L_TK = 1

S0 S1

S2

CIS = 1

SA = 1

S3

automatic

The complete diagram

S0 S1

S2

CIS = 1

SA = 1

S3

automatic

RF = 1

SB = 1

S4

S5

S3: L_A=1, L_TK=1

S4: L_B=1, L_TK=1

S5: L_RF=1

In class exercise

