

Parsing

Where to Start?

● Looking at this naively, you'll need to
– Setup

– Print prompt

– Read in user input

– Transform it to commands, files, and symbols

– Match to a pattern

– Execute command

– Print results

– Cleanup

● You'll need to do this for each line of input

Where to Start?

● int main() {
– while (1) {

● //Setup
● //Print prompt
● //Read input
● //Transform input
● //Match against patterns
● //Execute command
● //Print results
● //Cleanup

– }

– Return 0;

● }

● This is a REPL
– Read-eval-print-loop

● Used within most text-
based interactive
processes
– Lisp

– Scripting languages

– Shells

– Query languages

– Text-based games

Where to Start?

● int main() {
– char *line;

– char **cmd;

–

– while (1) {
● my_setup();
● my_prompt();
● line = my_read();
● cmd = my_parse(line);
● my_execute(cmd);
● my_clean();

– }

–

– return 0;

● }

● void my_setup() {}
● void my_prompt() {}
●

● char *my_read () {
– return NULL;

● }
● char **my_parse (char *line) {

– return NULL;

● }
●

● void my_execute (char ** cmd) {
– //Match against patterns

– //Execute based on pattern

– //Print results

● }
●

● void my_clean () {}

Where to Start?

● int main() {
– char *line;

– char **cmd;

–

– while (1) {
● my_setup();
● my_prompt();
● line = my_read();
● cmd = my_parse(line);
● my_execute(cmd);
● my_clean();

– }

–

– return 0;

● }

● void my_setup() {}
● void my_prompt() {}
●

● char *my_read () {
– return NULL;

● }
● char **my_parse (char *line) {

– return NULL;

● }
●

● void my_execute (char ** cmd) {
– //Match against patterns

– //Execute based on pattern

– //Print results

● }
●

● void my_clean () {}

my_read()

● Get line of data from stdin
– Can use fgets

– Make sure to check return value

● Return it as a c-string
● If dynamically created,

– Make sure to free it later (cleanup)

– Otherwise, you'll introduce a memory leak each
iteration

my_parse()

● Takes in a c-string of input
– Line from read

● Returns an array of c-strings
– Each of the command arguments in a separate cell

● Parsing is necessary because
– You need to strip excess whitespace

– You need to split up the arguments

– You need to expand environmental variables

– You need to resolve pathnames

my_parse()

● char **my_parse(char *line) {
– char **args;

–

– line = parse_whitespace(line);

– args = parse_arguments(parsed);

– args = expand_variables(args);

– args = resolve_paths(args);

–

– return cmd;

● }

● char **parse_whitespace(char *line) {
– return NULL;

● }
●

● char **parse_arguments(char *line) {
– return NULL;

● }
●

● char **resolve_paths(char **args) {
– return NULL;

● }
●

● char **expand_variables(char **args) {
– return NULL;

● }

parse_whitespace()

● Takes in a c-string
● Returns the same c-string after

adding/removing whitespace
● Transforms c-string such that there is exactly

one space between each argument
– To later parse out the arguments into an array

parse_whitespace()

● Use cases to consider
– Leading white space

● Remove until the first argument is at the 0th slot of the c-string

– Trailing white space
● Remove until the last character of the last argument is the n-

1th character of the c-string
– nth character is '\0'

– Extra white space between arguments
● When there is multiple spaces, you'll need to remove all but

one

parse_whitespace()

● Use cases to consider
– No white space between arguments

● Obviously can't handle cases like file1file2
– Instead you should just assume it is one argument
– Then when it (likely) doesn't exist, you'd return an error
– Alternatively, you can detect these cases if there are not enough

arguments to the command
● But for cases involving special characters...

– <file, cmd|, cmd|>file, etc
– You'll need to add a space between the special character and the

other argument
– Special characters include: |, <, >, &, $, ~
– Do not do this for: ., /

parse_whitespace()

● Use cases to consider
– 'Extra' characters

● The writeup specifies that you do not have to handle
– Escaping characters
– Regular expressions
– Quoted strings

● However, you should not remove these if they are in the original
input

– While rare, filenames can contain these characters
– Typically you'd have to escape them, but you don't have to worry about that in

this simple shell
● You do need to worry about accidentally adding special characters

– For example, fgets will place the newline separator in the input string
– This will cause those arguments to be wrong

parse_arguments()

● Takes in a c-string
– Represents the input command with augmented whitespace

● Returns an array of c-strings
– Represents the arguments of the command in separate cells

● Here you will traverse the input string placing the characters into
different buckets of the output array
– The bucket to place the characters in is determined by the number of spaces

encountered

– You can copy each character one by one or you can scan and then do a strncpy
using a offset

● The difficulties here will be
– C-string semantics

– Knowing how much space to allocate for each bucket

– Remembering to free later (cleanup)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

