
Laboratory Assignment #3

Extending scull, a char pseudo-device

Value: (See the Grading section of the Syllabus.)
Due Date and Time: (See the Course Calendar.)

Summary:

This is your first exercise that involves writing and debugging code. You will just be modifying the code

provided by the textbook author for the char pseudo-device scull, to provide a new type of minor device.

The new type of minor device will implement a specific kind of alphabetically-sorted buffer structure, and

will make us of the newer mutex lock structure instead of the (older) semaphore lock. This will not

require changing all of the existing code, but you should read it all through and understand it.

Objectives:

● Read and comprehend an existing driver.

● Add a new minor device type to an existing device driver.

● Experience testing and debugging your own kernel module code.

● Learn about mutex kernel locks.

● Learn to use the source versioning-control system ‘git’.

Tasks:

1 Get a copy of the textbook source code on the code page of the website. I have also directly

linked to the minimum set of files you will need to complete the assignment, but the textbook

source may contain extra helpful code.

2 Setup and use git throughout your development. Please create a separate directory for your

project – do NOT add your entire kernel source tree to the repository. (If you end up committing

your entire kernel source tree at this point, I may take off points.) Also, make sure you are only

committing code to your repository – not object files or compiled modules. Please refer to the git

class presentation and references for more information on setting up git. I will expect to see

commit activity in your git log as you work on the assignment. If you do not wish to use git and

would rather use another revision control system like svn, please email me and let me know.

3 Starting with the provided Makefile, compile the unmodified version of scull as it comes from the

text, and run through the tests described under "Playing with the New Devices" in the LDD3 text.
○ You will need to be running the class version of the kernel (3.2.x) for the module to

compile correctly.

○ Change directory to the scull subdirectory.

○ Use chmod to make the script files scull_load and scull_unload executable, or else

you will need to use the sh/bash syntax ". ./scull load" (in csh: "source ./scull_load")

to cause the shell to read them in and execute them. (Consider splitting these scripts, as

suggested under Advice, below.)
○ After reading scull_load, execute it (as root) to install the module and create the entries

in /dev for the devices.
○ Use shell commands and/or short C programs you have written (e.g., see sculltest.c) to

test the devices (as an ordinary user).

○ After reading scull_unload, execute it (as root) to remove the entries in /dev for the

devices, and remove the module.

4 Modify scull to add a new type of device that implements an alphabetically-sorted buffer (SORT)

called scullsort. The new code should retain all the functionality and minor device numbers of

the old scull, with one new added device number for the SORT type. Use the next available

unused minor number. Put as much as possible of your new implementation code in a separate

file, named sort.c, and make the minimum changes necessary to the other source files and the

Makefile.

5 Base your device on the existing scull pipe device. It should retain the same basic data structure,

and the same blocking behavior when a process tries to read from an empty device or write to a

full device.

6 The read operation should return the number of requested bytes from the SORT buffer in

smallest-unsigned-int-first order. It should return as many characters as requested, up to the

maximum that are in the SORT buffer. That is, if there were two writes to the SORT, of “hgfed”

and "cba", followed by a read of 5 characters, the value 5 should be returned and the string

"abcde" should be copied to the user's buffer. If the next read requests 5 more characters, the

value 3 should be returned and the string "fgh" should be copied to the user's buffer.

7 The behavior of an attempt to read from an empty SORT should block or not block, depending on

the whether the application opened the SORT with the O_NONBLOCK flag. If O_NONBLOCK is

not set, the read operation should block until some data is placed into the buffer. If

O_NONBLOCK is set, a read should return immediately with the standard behavior specified for

read with O_NONBLOCK when data is not immediately available (see the man-page).

8 The write operation should append the string to the end of the SORT. If the number of bytes

provided by the call is more than will fit into the SORT, and O_NONBLOCK is not set, the call

should write as much as will fit, and then block until there more space becomes available (due to

subsequent read operations, or other operations that remove data from the file). It should repeat

this writing and blocking until the entire string is written, before returning.

9 This leads to a semantic quandary if the operation is interrupted by a signal after it has written a

portion of the string. In this case you should return the number of characters written, rather than

returning -1 with errno equal to EINTR.

10 There should be just one IOCTL operation, and it should have the effect of emptying the SORT. It

should be named SCULL_IOCRESET.

11 The open() operation on an existing SORT should not destroy the content.

12 You should retain the other functionality of the pipe, including the ability of a SORT to be shared

between processes. To this end, take care that the new code you add follows the locking

conventions correctly.

13 As any other design questions come up, for which the precise behavior is not specified here, you

may either resolve them according to your best engineering judgment, or discuss them with me.

14 Test and debug your modified code. You should devise your own tests, to check that the

specification above are satisfied. You may be able to do some of the testing using shell scripts,

for example using cp, dd, and I/O redirection, as suggested in the text. However, for thorough it

will probably be necessary to write one or more C test programs, using the direct calls to read,

write, ioctl, etc.

Beware that the above semantics differ from those of the scull pipe in a number of subtle respects,

including but not limited to the blocking behavor, the IOCTL calls, and the effect of the open operation.
Advice:

● Get started right away.

● If you encounter problems, ask the instructors, either in the lab after class, by e-mail, or by

telephone.

● The file sorttest.tgz (found on the code class page) contains a test program for the SORT device,

which you should test against your implementation. In order to use this, you will need to pay

attention to the following details:

a The #ifdef __Kernel__ ... #endif needs to be added to a section of scull.h in order to

be able to reference the ioctl() command names from the application program sorttest.c

without pulling in a bunch of unwanted stuff from the kernel header files.

● For testing, you can start using scripts and shell commands, like cat, dd, but this is limited in the

scope of what can be tested. For thorough testing, you will need to write some programs in C,

using the system API. For a starting point, see sorttest.c, in the tarfile mentioned above.

● You will need to perform the following steps.
a Get, compile, and test the basic scull module.

b Create a new git repository.

c Make a copy of pipe.c under the name sort.c, and revise at least all exported names to

make them different from those in sort.c.

d Add your new file to the object files in the Makefile.

e Add any necessary support for your new device subtype to sort.h and main.c.

f Revise the read and write routines to implement the semantics according to the detailed

requirements above.

g Create your own ioctl routine, with just the one command supported.

h Remove all left-over (useless) code.

i Modify scull_load and scull_unload to create the appropriate device node(s) for your

new device(s), or use these as templates to write your own sort_load and sort_unload

scripts, that only create the node(s) needed for your SORT device.

j Compile and test your framework/prototype, using appropriate test programs/scripts that

you have written.
k When you have a working solution, save your complete configuration, and then modify all

the files to use kernel mutexes instead of kernel semaphores.

l Save your tests, for the demonstration.

m You will also want to modify the Makefile to add targets for all of your tests.

● You would be wise to do the above incrementally, maybe starting with just a duplicate of the pipe

code (no changes) that will compile and which you can test.

References:

● The textbooks (remember, LDD3 is out of date!)

● The example source files that came with the LDD3 text

● Anatomy of Linux synchronization methods

● The mutex API

Delivery Method:

1 Sign up for a time slot to demonstrate your code to the instructor, using the Doodle poll on the

class website.

2 Tar and zip up your assignment 2 code repository, and send it to both the TA and instructor’s

emails. Please leave your git files in the repository. Points may be taken off if unnecessary files

(such as object files) are left in your repository.

3 Come to your demonstration with printed copies of the files that you modified, with the parts you

modified pointed out in some clear way (e.g. marked colored highlighter), including copies of the

test scripts and/or programs you used. The instructor will mark up these print-outs during the

demonstration, so please make certain you have them.

Assessment:

If you do everything that is required and explain it adequately at the demonstration you will receive a

perfect score of 100. Deductions will be made according to the table below. The right-hand column shows

the maximum number points that may be deducted for each missed requirements. Bonus items, at the

end of the table, may earn points to compensate for some points deducted for missed requirements.
Pay attention to the quality of the tests that you prepare for the demonstration, as well as readability of

your code. During the demonstration, I will be looking to verify that you can demonstrate tests for all the

required functionality, but will also read your code.

Requirements Max

Deduction

Do you have a paper print-out of your code and tests? Have you submitted your repository

to the TA and instructor via email?
-10 and

reschedule

Is the paper print-out marked to indicate what parts you changed/wrote? -10

Have you used git? Do you have an active git log? -10

Are you are able to compile and load the kernel module? -100

Can you explain your code, and answer questions about both what you did and why you

did it that way?
-100

Do you have the test scripts or programs ready to go? (no editing during tests) -10

Does the read operation behave in an alphabetically-sorting manner, at the character level?

For example, if you write " hgfed" and " cba" but then read back 5 characters, do you get

"abcde" back? (not "defgh")

-10

When a read asks for more characters back than are in the SORT, does it return all those

that are left?

-10

When a read encounters no data in the buffer, does it block if-and-only if the file was not

opened with the O_NONBLOCK option?
-10

When a write tries to write more characters than the SORT can currently hold, does the

write operation block (looping internally, as necessary) until the entire string has been

written, if O_NONBLOCK is not set?

-10

Under the similar circumstances, does the write operation return immediately (without

writing anything) if O_NONBLOCK is set?
-10

Does reading from the SORT consume the data? -20

When the write operation blocks, and then a subsequent read creates more space, does

the write operation unblock?

-10

Does the SCULL_IOCRESET ioctl() command empty the SORT? -20

Does the SORT allow concurrent access by multiple processes? Have you tested it with a

concurrent reader and writer? multiple readers? multiple writers?

-20

If one process puts data into the SORT, and then closes it, is the data still there when

another process opens the SORT to read or update it?
-20

Have you maintained the correct use of locking to protect critical sections? Does the -20

protection cover all operations that access the device data? (reads? writes? IOCTLs?)

Have you preserved the old types of devices when you added your new device, without

breaking any of them or introducing possibilities for unchecked incorrect usage?
-10

Do the operations on your new device have any useless code, perhaps left over from

cutting and pasting? Code to wrap around the end of the buffer? IOCTLs that don't make

any sense for a SORT?

-10

Do you check the validity of all calls on your device? In particular, do you check for validity

of IOCTL calls, that any IOCTL's that do not make sense for your device are rejected? (You

cannot just modify the existing scull_ioctl(). You need to override it with a function specific

to SORT.)

-10

Have you replaced the semaphore by a mutex? -10

Optional Features Max

Bonus

Have you written C programs (not just scripts) for testing? +10

Do you have any special creative features that you invented, not required by the

assignment?
+20

Did you use Doxygen to create a reference manual of your project? +5

Note: the testable functional requirements above are predicated on you code should be free of

observable fundamental kernel programming errors, including the following:

● Race conditions

● Unprotected critical sections

● Memory leakage

● Dangling references to freed memory

● Lock usages that permit deadlock

● Unchecked calls to functions that return status, such as kmalloc()

● Practices that risk kernel stack overflow, such as allocation of unpredictable-sized local arrays in

kernel functions

● etc.
I have taken five (5) points off for each of the above errors, any one of which is serious enough to cause a

kernel crash.

