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ABSTRACT 

Confidential data storage through encryption is becoming 
increasingly important.  Designers and implementers of 
encryption methods of storage media must be aware that storage 
has different usage patterns and properties compared to securing 
other information media such as networks.  In this paper, we 
empirically demonstrate two-time pad vulnerabilities in storage 
that are exposed via shifting file contents, in-place file updates, 
storage mechanisms hidden by layers of abstractions, 
inconsistencies between memory and disk content, and backups.  
We also demonstrate how a simple application of Bloom filters 
can automatically extract plaintexts from two-time pads.  Further, 
our experience sheds light on system research directions to better 
support cryptographic assumptions and guarantees. 

Categories and Subject Descriptors 

E.3 [Data Encryption]: Code Breaking, Standards; K.4.1 

[Computers and Society]: Public Policy Issues – Privacy; K.6.5 

[Management of Computing and Information Systems]: 
Security and Protection 

General Terms 

Security. 

Keywords 

Block ciphers, bloom filters, modes of encryption, storage, two-
time pads. 

1. INTRODUCTION 
As the cost of storage rapidly declines, more and more sensitive 
data are stored on media such as hard disks, CDs, and flash drives.  
Inevitably, confidentially plays an increasingly important role in 
protecting sensitive data from theft and leakage due to 
unauthorized access, viruses, system penetration, physical loss 
[33], and improper disposal [15, 2, 41]. 

1.1 General Encryption 
The most widely-used mechanism to achieve confidentiality (of 
data in general) is through encryption. Ideally, each message is 
encrypted with a random unique key to achieve perfect secrecy; 

real-life implementations are far from perfect.  Therefore, to avoid 
identical messages encrypted using the same key resulting in the 
same encrypted message, initialization vectors (IVs) are 
introduced to seed the encryption process. 

Generally, applying encryption to communication shares the 
following characteristics:   

• Short-lived data streams (e.g., messages) 

• Write-once content (e.g., transactions) 

Given the short-lived and write-once nature of communication, 
the uniqueness of keys and IVs can be probabilistically achieved 
by first cycling through a very large IV space before changing to a 
new key.  (Of course, the assumption here is that the 
communication infrastructure is largely stateless.) 

1.2 Implications of Applying Encryption in 

Storage 
At a quick glance, storage is analogous to a communication 
channel through time, in the sense that the sender sends the 
message to a persistent storage medium, and the receiver can later 
retrieve the message from the medium.  Therefore, the same 
cryptographic mechanism should be applicable.  Unfortunately, 
the usage patterns of storage are different from those of 
communications in fundamental ways. 

• In-place updates:  Unlike ephemeral communication 
messages, a file is persistent.  Thus, an update to a file can be 
performed in-place (i.e., old content is overwritten with the 
new content at the same file location).  Therefore, if keys and 
IVs are generated as a function of data positions within a file 
or storage medium, the uniqueness of keys and IVs relative 
to data content is compromised. 

• Content shifting:  In addition to in-place updates, content 
can be inserted into a file, resulting in the shifting of original 
content.  Therefore, potentially a large quantity of original 
plaintext is encrypted via reusing the keys and IVs defined as 
a function of file and disk locations.   

• Backups:  Backups are often considered a problem domain 
orthogonal to confidential storage.  Unfortunately, naïve 
users may rely on encryption without using proper secure 
backup schemes.  For example, byte-to-byte image dumps of 
storage enable a passive form of “dead forensic” attack, 
where an attacker can simply collect different versions of 
backups, which violates the uniqueness of IVs and keys.  
This form of attack can be formidable, since an attacker at 
the archival site can potentially extract the plaintexts with 
neither access to keys nor user account information.  

Another problem occurs when rolling back more than one 
version of backup.  Should the generation process of unique 
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IVs and keys be deterministic after the restore point, all 
subsequent updates with different content will reuse the same 
IVs and keys used for content stored in previous backups.   

Additionally, the storage data path, which bridges user-space 
applications and the physical storage media, contains many states, 
with legacy design choices that are incompatible with the goal of 
data confidentiality. 

• Single generic data type:  A storage data path generally 
does not discern encrypted data from non-encrypted data.  
Therefore, sensitive data may not be handled properly (e.g., 
cached in plaintext).  This is commonly referred to as the 
data lifetime problem [16, 8, 7]. 

• Poor consistency guarantees:  Even if encrypted at all 
times, a newer, uncommitted version of an encrypted file 
may reside in memory while an older version of the file may 
reside on a disk.  Therefore, operating system mechanisms 
such as swapping and hibernation can lead to different 
versions of encrypted data stored on disks, potentially 
reusing the keys and IVs. 

• Information hiding:  Many storage data path components 
only provide logical views of the underlying storage and may 
not honor the intent of the security measures imposed above.  
For example, old and newly encrypted data may coexist, 
even though a user application can only see the latest 
version.  Should an attacker have access to the raw storage 
device, the attacker may find blocks pertaining to older file 
versions, potentially encrypted with reused keys and IVs. 

With these different usage patterns and infrastructures, we can 
identify encryption methods that are used in communications but 
vulnerable in storage. 

1.3 Contributions and Non-contributions 
The two-time-pad problem [27] describes how a key is reused to 

encrypt two plaintexts P and P’, where P ⊕ key and P’ ⊕ key can 

be XORed to recover P ⊕ P’.   Although XOR-based stream-
cipher attacks are well-known, these weaknesses have not stopped 
storage designers from using fast encryption modes to support 
efficient random in-place updates without re-encrypting the 
remaining file after the updated file location.  The fundamental 
assumption is that the randomness and uniqueness of keys and 
IVs, relative to encrypted content, can be largely achieved, but 
that, as we will demonstrate, can be very difficult in modern 
storage systems.   

Another reason for recurring two-time-pad storage solutions is 
that the ease with which automation can extract plaintexts is 
doubtful without advanced linguistic expertise and the general 
availability of such tools.  We demonstrate that English plaintexts 
can be automatically extracted from two-time pads via the simple 
application of a Bloom filter [3]. 

This paper is not about rediscovering the XOR-based stream-
cipher attacks, nor is it meant to criticize particular storage 
encryption systems.  The fact that systems with such problems 
exist shows a lack of cross-dissemination between the 
cryptography and storage arenas.  Therefore, we hope that this 
paper can empirically show what can go wrong when 
cryptography and storage constraints collide.  In particular, we 
will demonstrate various attacks that leverage vulnerabilities 
exposed via shifting file contents, in-place file updates, backups, 

storage mechanisms hidden by layers of abstractions, and 
inconsistencies between memory and disk content.   

The paper is written to be as self-contained as possible, so that 
both storage and security researchers can be exposed to the 
primitives and constraints from the other field.   

2. BACKGROUND 

2.1 Block Cipher Modes of Operation 
The operating mode of an encryption algorithm allows block 
ciphers to output messages of arbitrary length or turns block 
ciphers into self-synchronizing stream ciphers, which generate a 
continuous key stream to produce ciphertexts of arbitrary length.  
For example, using AES alone, one may only input and output 
blocks of 128 bits.  Using AES with a mode of operation for a 
block cipher, one may input and output data of any length.   

The most common modes of operation for block ciphers 
include electronic codebook (ECB) mode, cipher-feedback (CFB) 
mode, cipher-block-chaining (CBC) mode, output-feedback 
(OFB) mode, and counter (CTR) mode.  Table 1 lists the various 
modes of operation, along with the corresponding encryption and 
decryption specifications.  E and D stand for encryption and 
decryption respectively.  C is the ciphertext; P, the plaintext; and 
O, the temporary output. 

Table 1. Block cipher modes of operations. 

Mode of 

operation 

Encryption/decryption 

ECB Ci = Ekey(Pi); Pi = Dkey(Ci) 

CFB Ci = Ekey(Ci-1) ⊕ Pi, C0 = IV 

Pi = E key(Ci-1) ⊕ Ci, C0 = IV 

CBC Ci = Ekey(Pi ⊕ Ci-1), C0 = IV 

Pi = Dkey(Ci) ⊕ Ci-1, C0 = IV 

OFB Ci = Pi ⊕ Oi; Oi = Ekey(Oi-1), O0 = IV 

Pi = Ci ⊕ Oi; Oi = Ekey(Oi-1), O0 = IV 

CTR Ci = Ekey(IV ⊕ CTRi) ⊕ Pi 

Pi = Ekey(IV ⊕ CTRi) ⊕ Ci 

2.2 Vulnerabilities of Certain Block Cipher 

Modes of Operation 
A common problem with stream ciphers is that generating two 
ciphertexts with the same key and IV can leak information about 
both original plaintexts.  A stream cipher operates by producing a 
key stream based on a key and IV.  The plaintext is then XORed 
to the stream to produce the ciphertext.  When two ciphertexts 
created with the same key and IV are XORed together, the key 
stream is canceled out, and the result is the XOR of the two 
original plaintexts. 

Some block cipher operation modes can behave similarly to a 
stream cipher.  For example, the CFB, OFB, and CTR modes all 
create a mask based on a key and IV, and the ciphertext block in 
question is created by XORing the mask together with the 
plaintext.  If two versions of the ciphertext are found to have been 
created by the same key and IV, the mask can be canceled out to 
generate the XOR of the two plaintexts. 



We formally demonstrate a vulnerability, which involves two 
known versions of blocks of ciphertext (C and C’) that share 
identical keys and IVs in certain block cipher modes of operation.  

The vulnerability occurs when C ⊕ C’ = P ⊕ P’, where P and P’ 

are the plaintext versions of the block.  Once the attacker has P ⊕ 

P’ of the block in question, the attacker may employ various 
methods to extract plaintext, as discussed later in the paper. 

The following sub-sections demonstrate the vulnerability with the 
following modes of operation: CFB, CTR, and OFB.  Our 
examples may be used with many common block ciphers as the 
encryption algorithm used to create the mask (such as DES, 3-
DES, and AES).  These examples also explore a single encrypted 
block of text, but could easily be extended to address entire files. 

2.2.1 CFB 
In cipher feedback mode, a ciphertext block is encrypted by 
XORing the current plaintext block with the previous ciphertext 

block (i.e., Ci = Ekey(Ci-1) ⊕ Pi, where C0 = IV).  If we refer Ekey(C-

i-1) as the key mask, M, then we have Ci = M ⊕ Pi.  Similarly, by 

updating Pi to Pi’ in-place, we have Ci’ = Ekey(Ci-1) ⊕ Pi’, or Ci’ = 

M ⊕ Pi’, assuming that the key and IV remain unchanged.  Thus, 
by XORing Ci and Ci’ on the left-hand side, we have the 

following right-hand side: M ⊕ Pi ⊕ M ⊕ Pi’, or Pi ⊕ Pi’.  With 
CFB, the scope of vulnerability is limited to the current in-place 
updated block, since the key masks for subsequent blocks differ 

(i.e., Ci+1 = Ekey(Ci) ⊕ Pi+1, while Ci+1’ = Ekey(CI’) ⊕ Pi+1).  
Another implication is that an in-place update can cause the 
remaining file to be re-encrypted. 

2.2.2 CTR 
In counter mode, a block is encrypted via XORing a plaintext 
block with a key mask produced by encrypting content based on a 

per-block unique counter (i.e.,  Ci = Ekey(IV ⊕ CTRi) ⊕ Pi).  If we 

refer Ekey(IV ⊕ CTRi) as the key mask, M, we can see that Ci = M 

⊕ Pi, similar to the CFB case.  An in-place update from Pi to Pi’ 

yields Ci’ = Ekey(IV ⊕ CTRi) ⊕ Pi’, or Ci’ = M ⊕ Pi’.  With the IV 
and counter unchanged by the in-place update, it is easy to see 

that Ci ⊕ Ci’ = Pi ⊕ Pi’.   

Unlike CFB, the counter mode supports random access, where an 
in-place update does not require the remaining file to be re-
encrypted.  However, since the key stream for the entire file can 
be reused, different versions of the file can be XORed to reveal 
changed information.  This vulnerability is particularly 
pronounced, given that a common file operation is content 
insertion, which can cause a significant portion of the original 
content to be shifted.  In this situation, CTR mode leaks 
information about the plaintext beginning with the first changed 
block and potentially ending with the last block in the file or 
extent.  While it can be challenging to extract original information 
from XORed plaintexts, the knowledge of content shifting can 
significantly improve the chance of extracting the plaintexts. 

2.2.3 OFB 
In output-feedback mode, a ciphertext block is generated via 
XORing the plaintext with the encryption of the previous key 

mask (i.e., Ci = Ekey(Oi-1) ⊕ Pi, O0 = IV).  In this case, the key 

mask is Ekey(Oi-1), or M; therefore, Ci = M ⊕ Pi.  An in-place 

update from P to P’ yields Ci’ = M ⊕ Pi’, and one can see that 

again Ci ⊕ Ci’ = Pi ⊕ Pi’. 

Both the support for random access and vulnerability 
characteristics of the OFB mode is the similar to the counter mode 
in the storage context, since the key stream is based on only the 
original key and IV.   This key stream can be pre-generated and 
can stay the same, even if a block is modified.  Like CTR mode, 
the OFB mode leaks information about the plaintext from the first 
changed block to potentially the last block in the file or extent. 

3. CRYPTANALYSIS METHODS 
With different versions of data encrypted with the same key and 
IV under CFB, CTR, or OFB mode, we may perform 

cryptanalysis on the resulting Ci ⊕ Ci’, which is just Pi ⊕ Pi’ with 
an entropy that is likely to be significantly lower than that of a 
random data stream.   As proof of this concept, we prototyped a 
utility to extract XORed English texts.  

3.1 Common Methods 
Many methods exist to separate plaintexts from Pi ⊕ Pi’.  For 
example, if one of the plaintexts is known apriori, the other 
plaintext is easily extractable.  Often times, an attacker may guess 
a probable plaintext string in Pi and use a “dragging crib” method 
[40] to XOR the probable plaintext against every position in Pi’ to 
detect intelligible text.  An attacker could also use language-
specific heuristics (e.g., average word length and word frequency) 

to solve to Pi ⊕ Pi’ [9]. 

Another method to extract XORed plaintexts is based on letter 
frequency analysis.  Depending on the file type (e.g., English 
plain text, source code, or word processing document), a 
frequency table of each character’s occurrence in a representative 
training set can be tallied.  For example, several such tabulations 
exist for letters in the English language [1, 12, 28, 39].  With 
these statistical distributions, emphasis can be given to those 
XORed character pairs that contain high frequency characters, 
while enumerating all possibilities. 

N-gram analysis [18, 27] can be used in conjunction with 
frequency analysis or on its own.  Like frequency analysis, lists of 
n-character strings, or n-grams, can be tallied from a 
representative training set.  Then, while enumerating all 
possibilities, emphasis may be given to texts that appear 
frequently in the tally. 

3.2 Automated Extraction of XORed 

Plaintexts 
We prototyped a DecodeXOR utility to extract XORed English 
plaintexts based on the concept of N-grams.   However, our 
simple prototype extracted plaintexts only based on constraints 
imposed by XORs and texts seen in the training set.  We did not 
track the frequency of N-gram occurrences, build Markov and 
hidden Markov models, or apply dynamic programming methods 
such as the Viterbi algorithm [42].  The predominant algorithm 
used was hashing.  Unlike many studies, we made no restrictions 
on the absence of punctuations, capital and small case letters, 
numbers, and extended ASCII characters.   

DecodeXOR consists of three design components:  (1) n-gram 
table representation and construction, (2) solving plaintext 
substrings under various constraints, and (3) data structures for 
tracking and assembling candidate plaintext substrings.   



3.2.1 N-gram Table Representation and 

Construction 
The program takes in a training file, in our case, enwik8 [24], 

which consists of 100MB of (mostly) English content from 
random web pages.  To capture all 2-grams in the file with 
characters {p0, p1, … p100 x 2

20
-- 1}, we hashed all two consecutive 

characters into a bitmap, where the hash(pi, pi+1)
th bit is set to 1 to 

indicate the possible transition from pi to pi+1; 0, otherwise.   

Collisions are possible and allowed.  Therefore, it is possible to 
explore letter transitions not present in the training set.  However, 
out of 256 x 256, or 64K possible extended ASCII character 
transitions, only 18% of edges are used in our training set.  
Therefore, we can reduce the collision rate to an arbitrary 
threshold (in our case < 1%) by increasing the number of hash 
bins.    

The method used to capture 2-grams was extended to capture 3- to 
6-grams.  Collisions are also allowed.  To verify that two 6-letter 
strings are identical, all possible substrings of 2- to 5-grams also 
need to be checked.  Fortunately, knowing that the training file is 
processed sequentially, an optimization can be applied to check 
only the 2- to 5-grams containing the last letter of a 6-letter string.  

One concern is the memory size requirement.  For the 6-gram 
case, 223 edges (out of 240 possible) are present in our training set, 
and we allocated 228 hash bins, which can be represented with 
32MB of memory if each bin is represented by one bit.  Also, 
hash tables for 2- to 6-grams can be collapsed into a single table, 
where various hashing mechanisms can be consolidated into a 
Bloom filter [3], where five hash functions are based on different 
n-gram lengths. 

3.2.2 Solving Plaintext Substrings 
Without the frequency information, DecodeXOR had to solve 
XORed plaintexts based on the constraints of individual letters.   
Formally, given a stream {c0, c1, …} created by XORing the 
corresponding letters in plaintext stream1 {p0, p1, …}, and 
plaintext stream2 {p0’, p1’,…}, the candidate plaintexts need to 
conform to the following constraints for each 7-character XORed 
substring {ci, ci+1, …, ci+6}: 

1. pj ⊕ pj’ = ci, for all i < j < j+6 

2. {pi, pi+1, …, pi+5}, {pi’, pi+1’, …, pi+5’}, {pi+1, pi+2, …, pi+6}, and 
{pi+1’, pi+2’, …, pi+6’} are legitimate 6-grams. 

3. The last five characters of {pi, pi+1, …, pi+5} need to match the 
first five characters of {pi+1, pi+2, pi+3, …, pi+6}, same for p’ 
substrings. 

Interestingly, we allowed the analysis for the entire extended 
ASCII character set due to the second constraint.  If we disallow 
certain characters, the second constraint may not be satisfied. 

3.2.3 Tracking and Assembling Candidate Plaintext 

Substrings 
For each plaintext solving window of 7 characters (XORed 
substring), DecodeXOR can identify many 6-character candidate 
plaintext substrings that satisfy constraints listed in Section 3.2.2.  
To track and eventually assemble the final plaintexts, we need to 
have a dedicated data structure.    

DecodeXOR uses a hash table to track 6-character candidate 
substrings.  Its key design is the hash function.  For each 

candidate 6-character substring, only the last 5 characters are used 
for hashing, to determine the storage location of the 6-character 
substring.  In other words, for a given 6-character substring, the 
hash of the first 5 characters points to the hash bin location of the 
previous candidate substring with the last 5 characters matched.  
(Hash collisions are resolved via a linked list.)  Therefore, when 
the decoding process reaches the last 6 characters, a series of hash 
operations will connect various candidate substrings to form the 
final plaintext string.  

3.2.4 Observations and Limitations 
Although this decoder is simple, written in C, with only 363 
semicolons, it is sufficient to be used to demonstrate various two-
time-pad-related vulnerabilities in storage.  DecodeXOR can 
process the 100MB training file in 5 minutes (a single pass) on a 
3Ghz Pentium® D with 2GB of RAM, and decode short XORed 
strings in seconds.  

Of course, this naïve decoder has ample room for enhancements.  
First, as with any decoder, our ability to decode relies heavily on 
the training data set.  Second, the XOR of two lower-case letters 
are the same as capital letters.  Therefore, in certain cases, 
determining the capitalization at the beginning of a sentence 
requires a higher level of language processing [21].  Third, 
decoding XORed numbers is problematic.  Again, a higher level 
semantic process is required.  Fourth, we did not take advantage 
of possible content shifting, which can further enhance the 
decoding ability due to additional decoding constraints.     

4. REAL STORAGE EXAMPLES 
This section demonstrates how real storage mechanisms can turn 
the original intended one-time pads into two-time pads.  We need 
to reiterate that the intent of this paper is not to criticize particular 
implementation; rather, it aims to show that (1) although not 
necessarily straightforward, these attacks can be materialized, and 
(2) the scope of the problem proliferates throughout the storage 
data path, ranging from high-level file systems and memory 
management to low-level device management.  First, we use a 
widely used file system to demonstrate the problems with in-place 
updates and shifting content.  We then explore the issue of 
inconsistency in memory and disk content via hibernation and 
demonstrate how, through entropy analysis and the DecodeXOR 
tool, we can extract newer versions of encrypted data from swap.  
Additionally, we illustrate how storage layer abstractions, such as 
wear-leveling applied to flash storage can lead to this 
vulnerability.  Finally, we show how backups can cause reuses of 
keys and IVs in an all-or-nothing secure deletion system.  

4.1 File System Encryption 
CryptoFS [20] is a file system that takes advantage of the Linux 
Userland FileSystem (LUFS) kernel module [26], which allows a 
file system to be built in user space without having to write any 
kernel-level code.  CryptoFS adds cryptographic functionality in a 
layer above an underlying file system (e.g., ext3).  Encrypted file 
names and data are stored in a regular directory.  This directory 
becomes accessible as plaintext by mounting to a special 
unencrypted directory after a user provides the password.  

CryptoFS uses libgcrypt, a general-purpose cryptographic 

library based on GnuPG [17], and supports the symmetric ciphers 

AES, DES, Blowfish, CAST5, Twofish, and Arcfour.  The 
message digest algorithm, the granularity of encryption per IV 



(e.g., extent size), and number of unique IVs (i.e., default 256) are 
user-configurable.  The message digest algorithm produces the 
encryption key from a passphrase.   Files are divided into extents, 
and CFB mode is used within each extent to support faster 
random access times.  The extent size is configurable, although it 
is recommended to be the disk block size (usually 4096 bytes in 
Linux).  Initialization vectors are generated as the disk block 

number % number of IVs.  Therefore, the ciphertext will repeat 
after number of IVs x extent size bytes if the same data is being 
encrypted.  The CFB mode is hardcoded and cannot be changed 
without changing the source code.   

Our test system is a Debian Sarge VMware virtual machine 
running a 2.4.27-3-386 kernel.  We installed the lufs-

cryptofs-0.3.1-1.1 package from the main stable Debain 

repository [10].  We also downloaded and installed lufs-

source-0.9.7-6 to make the lufs kernel module. 

We began by creating a mount point /crypt and a regular ext3 

directory /root/secrets, which is later designated to store 

encrypted content.  We then used a special mount command to 
mount /root/secrets over /crypt:   

>lufsmount cryptofs:///root/secrets /crypt 

Enter password: 

> 

This special mount operation allows us to create encrypted 
content under /root/secrets.  However, while the directory 

is mounted, we can access the content in plaintexts via the 
/crypt path.  Next, we created a file under /crypt called 

secret.txt, containing the string:  “Now is the time for all 

good people to worry about their privacy.”  The directory 
/root/secrets now holds a corresponding file called 

TdedtcxtXL5j5g==, which is the encrypted name for 

secret.txt. 

After we unmounted CryptoFS, the plaintext is no longer 
accessible, and /crypt appears to be empty.  However, suppose 

the owner of the encrypted file makes a backup copy of 
/root/secrets/TdedtcxtXL5j5g== to a removal 

medium but leaves the copy sitting around due to the confidence 
of encryption.  Then, an attacker can just secretly make copies of 
different versions of the encrypted file over time.   With two 

different versions of the ciphertext, the attacker can perform Ci ⊕ 
Ci’ and run DecodeXOR to extract plaintexts. 

To illustrate information leaks due to both in-place updates and 
content shifting, we inserted a space at the beginning of the file to 
generate the second version of the encrypted file.  Due to 
unchanged IVs, in-place updates imply that we can extract 128 
bits (or 16 bytes) of information from the updated block (Figure 
1).  

Additionally, due to the way CryptoFS handles encryption in 
extents, every extent is associated with a predictable, unchanging, 
per-extent IV.  Therefore, once the content starts to shift, an 
attacker can decrypt the first 128 bits (or 16 bytes) of subsequent 
extents after the content insertion point.  Thus, as an attacker 
accumulates different versions of the same encrypted file over 
time, more information can be revealed due to both in-place 
updates and content shifting. 

 

Figure 1. XOR of ciphertext compared to XOR of             

plaintext in hexadecimal from file secret.txt. 

With our simple DecodeXOR, we were able to extract five 
possible XOR pairings of 16-byte English plaintexts that can 
generate the same ciphertext (Table 2).  Should DecodeXOR 
leverage additional information such as content shifting, the 
fourth pair will be favored over others.   

Table 2. Possible pairings of 16-byte English plaintexts       

that generate the same XORed ciphertext. 

1
st
 XOR pair 

Now is the tied 
 Now is the tale 

2
nd
 XOR pair 

Now is the tied. 
 Now is the talk 

3
rd
 XOR pair 

Now is the time 
 Now is the timb 

4
th
 XOR pair 

Now is the time' 
 Now is the time 

5
th
 XOR pair 

Now is the time, 
 Now is the timi 

We also note that this type of attack may be possible without 
either physical access to the machine or root privileges on a 
shared network folder or server if the owner of the encrypted files 
does not properly protect the files from unauthorized read access. 

4.2 Swap via Hibernation 
Two storage-related components can interact in ways that 
introduce the two-time-pad vulnerability.  One component is 
memory caching, which may keep recently modified encrypted 
data around, in hope to consolidate multiple updates to the same 
disk location into a single write to disk.  The other component is 
hibernation, which allows a system to save current memory states 
to non-volatile storage and power down.  The system can then 
later resume execution from the state saved before hibernation by 
restoring power.  Although the cached data can be encrypted at all 
times, the memory version is not always consistent with the disk 
version due to the write-back policy.  A trigger of hibernation will 
lead to two versions of encrypted data to be stored on disk, with a 
potential reuse of the same key and IV. 

We demonstrate this vulnerability under Linux 2.6.22.6, in which 
swsusp implements a software suspend mechanism that allows 

for non-volatile hibernation.  To suspend, swsusp creates a list 

of active pages excluding bus addresses used between peripheral 
buses and memory.  Next, swsusp writes both the user memory 

and kernel memory to the swap device.  Then, swsusp follows 

the three-level page cache, starting from the page global directory, 
and writes the pages in sequence onto the disk.  Note that the 
kernel memory always gets written to the beginning of the swap 
partition, and only active pages are written during suspend  We 
can use this knowledge to reduce the search space significantly 
when examining a large swap device.   

Ci ⊕ Ci’ 
6e 21 18 57 49 1a 53 54 1c 0d 45  

54 1d 04 08 45 ea 71 93 52 8a 7d  

Pi ⊕ Pi’ 
6e 21 18 57 49 1a 53 54 1c 0d 45  

54 1d 04 08 45 46 09 1d 52 41 0d 



To verify that kernel memory is written to the swap partition 
during suspend (instead of having memory retaining the content in 
a low-power mode), we conducted the following experiment.  We 
modified the kernel init() function to kmalloc 512 bytes 20 

times.  Each time we filled the 512 bytes with the same 
predetermined content.  Before each test, we verified that the 
predetermined string was not present in memory initially, and 
zeroed out the swap partition.  We then ran mkswap to create a 

clean swap device.  The machine was then rebooted, followed by 
a suspend, resume, and another reboot.  Next, we searched the 
swap partition for the predetermined 512 byte string, which 
appeared 20 times.  This experiment told us that the suspend 
mechanism does write kernel memory to the swap partition when 
invoked.   

Up to now, we have shown that known plaintext can be found at 
unknown locations on a suspend partition.  We then need to 
illustrate how to find encrypted data at unknown locations on a 
swap partition.  In this experiment we (1) injected encrypted data 
into memory that is then propagated to swap via the swsusp 

mechanism, (2) identified swap candidate blocks with high 
entropy, (3) created XOR blocks by XORing encrypted file blocks 
with the candidate swap blocks, and (4) used DecodeXOR to 
analyze XOR blocks that exhibit low, but non-zero entropy. 

We began with two versions of a file.  The first was an 8-KB file 
with the repeating string “This is a test” encrypted with AES 
using CTR mode.  The second was the same file with a space 
character inserted somewhere in the second 4-KB block of the 
file, and the modified file was truncated to 8 KB.  The file was 
then encrypted with AES using CTR mode.  Both versions used 
the same IV and key.  The modified version was loaded into page-
aligned kernel memory and the machine is suspended using 
swsusp.   This simulated a request to modify an encrypted file 

that did not immediately reach the disk.   

At this point we assume that an attacker has access to the entire 
disk image.  The unmodified 8-KB encrypted file can be identified 
and retrieved if the file system does not hide its directory 
structure.  The entropy was then computed via the ent tool [43] 

on each 4-KB block on the swap partition.  Blocks with high 
entropy were marked as candidate blocks.  This step filters out 
half of the swap partition blocks.  Each candidate swap block was 
XORed with each 4-KB block in the unmodified encrypted data 
file, and the entropy was again calculated.   

The resulting entropy placed the XORed block into one of three 
categories.  When the entropy is high, either one of the two 
XORed blocks is encrypted, or both blocks are encrypted with 
different key masks.  Therefore, the XORed block is not 
considered further.  This step reduces the number of candidate 
swap blocks down to two.  When the entropy is zero, the 
candidate swap block is the same as the unmodified file block.  In 
our case, only one block was XORed to zero.  Knowing how the 
Linux memory allocator strives to allocate memory contiguously 
whenever possible, the zero-block location can serve as a valuable 
reference point to speed up searches.  The remaining non-zero 
entropy candidate blocks are then examined further to determine 
the position of the modification within the 4-KB block.  
Specifically, we took the XORed 4-KB block and found the first 
non-zero byte at the starting position.  The end of the modified 
encrypted data is found by traversing from the last byte of the 
block and back to the beginning of the block until a non-zero byte 

is reached.  The identified XORed string between the beginning 
and the end were then analyzed by DecodeXOR. 

Although the above experiment is a minimalist example, we 
illustrated key steps to exploit the vulnerability.  We also tried a 
larger example with 500 MB of swap pair-wise XORed with every 
encrypted block in a 2-GB partition.  The search time only took 
about 30 seconds on a 2.8 GHz Pentium® D machine with 1 GB 
of RAM.  A more realistic setup would include a system that has 
been in use for some time, which would result in versions of 
random content in the memory swap overlapped at times from 
various hibernation sessions, making it more difficult to identify 
candidate blocks.  With the knowledge that swsusp writes the 

content of the kernel memory to the beginning of the swap 
partition and that memory is divided into regions and allocated 
consecutively whenever possible, together with the result of 
unmodified encrypted data XORed into zeros, we can reduce our 
search space drastically when analyzing the swap partition. 

4.3 Flash Storage 
The use of flash-based memory storage is now ubiquitous due to 
its low cost, the lack of moving parts (when compared to hard 
disks), low levels of energy consumption, and fast read times.  
Flash comes in two forms: NAND and NOR.  NOR flash memory 
allows applications to execute in-place and has been traditionally 
used in embedded computing devices, such as cell phones and 
PDAs.  NAND flash is less expensive, is accessed on a page basis 
(typically 512 bytes), and is typically used in digital cameras, 
flash drives, USB thumb drives, solid state hard disks, and mp3 
players.  In this paper, we are only concerned with NAND flash. 

Although popular, NAND flash has a number of physical 
limitations [13]:  (1) Each memory location can only be written 
from 10,000 to 1,000,000 times before they become unreliable.  
(2)  The erasure time of a memory location is orders of magnitude 
longer than reads.  (3) Overwriting a memory location with 
existing data involves first erasing the memory location before 
writing new data.   To overcome the limited number of erasure 
cycles for a given memory location, a technique called wear-
leveling [6, 22] rotates the usage, or wear and tear, of memory 
locations evenly to prolong the life of the device.  To avoid slow 
erasures and overwrites, many storage optimizations, such as flash 
translation, allow new updates to be stored in empty memory 
locations, while the locations with old content are erased in the 
background.   

Various optimizations are problematic when encryption methods 
are applied to common NAND flash devices.  Old versions of 
ciphertext blocks may be frequently left on the device due to the 
lack of provision of in-place updates.  To demonstrate this, we 
used the file system jffs2, which is the second version of the 
Journaling Flash File System [44].  Flash file systems like jffs2 
are typically log-structure-based [36], tailored to provide wear-
leveling and performance optimizations for flash devices, and they 
operate directly on the flash chips.  Since these mechanisms are 
performed at the file-system level and are not sensitive to the 
underlying medium, we used a 256MB on-disk partition to 
emulate flash storage.  The main reason for emulation is to isolate 
the optimizations performed by jffs2 from built-in wear-leveling 
and translation mechanisms on flash, which are not always well 
documented or exposed for direct manipulations and observations.  
The emulation was done via the following steps.  



1. We loaded the emulation module block2mtd, which came 

with the jffs2 source [45].  We also loaded modules 
mtdblock and jffs2 for our test system running Linux 2.6.18-

5-686. 

2.  We issued the command mkfs.jffs2 -o /dev/sdb4 to 

create the file system, where sdb4 is our emulated flash 

partition. 

3. We issued the command mount -t jffs2 

/dev/mtdblock0 /dev/sdb4 to mount the file system. 

We then wanted to simulate a user making a supposed “in-place” 
update to an encrypted file stored on our emulated flash partition.  
We began with two versions of a file encrypted with 128-bit AES 
in OFB mode.  The file was an 8-KB file with the repeating string 
“This is a test”, and the second was the same encrypted file with a 
space character inserted somewhere in the second 4-KB block of 
the file, with the file truncated to 8KB.  Both versions used the 
same random IV and key.  The original version was placed on the 
emulated flash partition.  The modified file was stored under a 
different file system.  We copied the modified 4-KB block to 
overwrite the second block of the original file. 

Using a hex editor on the raw emulated flash partition, we were 
able to verify large portions of the second 4 KB of the original 
file.  An attacker could similarly use tools based on entropy, such 
as the tools we used in Section 4.2, to discover probable old 
ciphertext blocks.  By XORing two versions of ciphertexts and 
feeding the result to DecodeXOR, we were able to reconstruct 
plaintexts from the last 4KB of each ciphertext file. 

4.4 Secure Storage and Deletion using the 

AON Transform 
All-or-nothing (AON) [35, 5] is defined as a cryptographic 
transform that, given only partial output, reveals nothing about its 
input.  In other words, no one block of ciphertext can be 
decrypted without obtaining all blocks of ciphertext.  The original 
intention of AON was to increase the difficulty of brute-force 
attacks on the key.   

This concept was adapted by a versioning file system [32], which 
was based on ext3cow [31], a copy-on-write file system.  This 
system used authenticated encryption to store data confidentially, 
provide file integrity, and delete unwanted versions of files on 
versioning file systems.  Specifically, versions of files are deleted 
by overwriting a small 128-bit stub.  Once a stub is overwritten, 
the corresponding version of a file cannot be recovered. 

The encryption algorithm takes the following as inputs: 

• One plaintext data block divided into 128-bit plaintext blocks 
{d1, d2, …, dm}. 

• A unique identifier id for the block (block’s physical address). 

• A unique global counter x (a system-wide epoch currently 
stored in the superblock). 

• An encryption key K. 

• A message authentication (MAC) key M. 

To encrypt, as shown in Figure 2, the algorithm generates a 
unique encryption counter ctr1 (step 1) by concatenating the 
unique block identifier id with the unique global counter x, 
padded with zeros.  The algorithm then performs an AES 
encryption in CTR mode (step 2) using the XOR of the encryption 

key K and ctr1, resulting in the encrypted ciphertext blocks {c1, c2, 

…, cm}. 

 

Figure 2. The adopted AON transform encryption operation. 

The encrypted blocks are authenticated (Step 3) using SHA-1 and 
MAC key M as a keyed-hash for message authentication codes 
(HMAC) to produce the authenticator t.  A second unique 
encryption counter ctr2 is created (step 4), and t and ctr2 are used 
to re-encrypt the data via the AES-CTR mode to produce double-
ciphertext blocks {x1, x2, …, xm}.  The stub x0 is generated (Step 6) 
by XORing all the double-ciphertext blocks {x1, x2, …, xm} with 
the authenticator t. The resulting stub is an expansion of the 
encrypted data and is not secret.  Decryption is detailed in [32]. 

A number of properties in this AON encryption make it an 
intriguing example.  (1) The ciphertext is doubly encrypted.  
Therefore, at the first glance little information is available to 
extract versions of singly encrypted text.  (2) The second 
encryption is in counter mode, but with a changing key, namely t 
the authenticator, which is a function of all singly encrypted text.  
(3) The counters are based on physical disk locations, which are 
unique, and the epoch number x (also unique).  In addition, the 
copy-on-write semantics may avoid in-place updates, which 
further prevents different versions of data to reuse the same disk 
location and epoch number. 

With a closer look, we have the access to ctr1, ctr2, x0, {x1, x2, …, 

xm} as public knowledge.  Therefore, the authenticator t can be 
retrieved, reflecting that the second round of encryption is only a 
transformation to achieve the all-or-nothing property.  Therefore, 
we once again have the access to singly encrypted {c1, c2, …, cm} 
for cryptanalysis.  Since the two counters are based on the disk 
location and the epoch number, we have to check and verify the 
circumstances where in-place updates are allowed and how the 
epoch number is incremented.  The ext3cow design conserves 
storage by allowing in-place updates for the same file blocks 
within the same epoch.  The epoch number is incremented when a 
snapshot is taken.  Therefore, as long as snapshots are not taken 
frequently, an attacker can use disk backup images to locate 
different file versions within the same epoch for cryptanalysis.   

To demonstrate this weakness, we created a scenario with the 
following steps: 

• Create file 1 with two encrypted 4-KB blocks, C1 and C2 

• Create a backup B1  

• Update C2 with C2’ 

• An attacker can take a disk image dump B2 and analyze B1 and 
B2 

Input: Data Block {d1, d2, …, dm}, Block ID id,  

Counter x, Encryption key K, MAC key M 

1: ctr1 ← id||x||1||0128−|x|−|id|−1 

2: {c1, c2, …, cm} ← AES-CTR[ctr1, K, {d1, d2, …, dm}] 

3: t ← HMAC-SHA-1[M, {c1, c2, …, cm}] 

4: ctr2 ← id||x||0||0128−|x|−|id|−1 

5: {x1, x2, …, xm} ← AES-CTR[ctr2, t, {c1, c2, …, cm}] 

6: x0 ← x1 ⊕ … ⊕ xm ⊕ t 

Output: Stub x0, Ciphertext {x1, x2, …, xm} 



We gained access to the original source of AON-ext3cow.  
However, we were unable to retrofit the environment to conduct 
our experiments on the actual system.  Instead, we duplicated the 
AON-ext3cow encryption scheme via a user-level program using 
the nettle encryption library [29] (libnettle2 and 

libnettle-dev packages under Ubuntu Linux), so that we 

could create the same files that would be generated in the above 
scenario.  Through static code reviews of AON-ext3cow, we were 
glad to find out that this particular vulnerability is actually fixed, 
via replacing the CTR mode with CBC.  However, our point is not 
about showing the flaw of a particular system.  Rather, even the 
design of modern and sophisticated storage systems can still 
mismatch diverse storage usage patterns and become vulnerable.  
Therefore, we implemented our user-level encryption program 
according to the scheme described in the original paper. 

Without a running instance of AON-ext3cow, we divided our 
demonstration into two parts:  (1) showing that we can update a 
file in-place with the same epoch under ext3cow (2) showing that 
we can decrypt AON-encryption via two versions of ciphertext.   

For the former, we downloaded and installed ext3cow-2.6.20.3 
and an epoch query program called tt from the ext3cow-tools 

package.  We then performed the following steps.   (1) We created 
a plaintext file with two 4-KB blocks and noted their relative 
positions within the file system partition, which were 10,240 and 
10,241.  (2) We ran tt to check the epoch number, which was 

also the file creation time, represented in the number of seconds 
since 1/1/1970.  This number was 1201314595.  (3) We updated 
the file content in the second 4-KB block and searched for the 
original content in the first block and the modified content in the 
second block.  Both blocks stayed at the same location, indicating 
in-place updates.  (4) We ran tt again, and the epoch number 

remained the same.   

For demonstrating the decryption capability, we first created two 
versions of an encrypted 8-KB file with the same content as the 
files in the flash example in Section 4.3.  We assume the same 
user-provided encryption key K is used to encrypt both files, since 
the AON-ext3cow code suggests one key K is used to encrypt the 
entire file system. We used the hex string 
“9DFE54BFABA6A065FD1091F7B98524E4” as key K, the hex 
string “C27CB47DDAC849FCA4F90656E694CF90” as MAC 
key M, 41,943,040 and 41,947,136 (byte offsets) as block ID id, 
and 1201314595 as the global epoch number x.  To extract the 
authenticator t for each version, we XORed all doubly-encrypted 
blocks, including the stub x0.  To extract the singly-encrypted 
ciphertext, reverse the second encryption operation by performing 
the AES-CTR operation with ctr2, the authenticator t, and doubly-
encrypted blocks {x1, x2, …, xm}.  With singly-encrypted 
ciphertext, we were able to use DecodeXOR to extract the 
plaintext.  If the entire disk images B1 and B2 were available, an 
attacker could use tools based on entropy, such as the tools we 
used in Section 4.2, to discover probable old ciphertext blocks. 

5. DISCUSSION 
Through the above demonstrations, we experience first-hand that 
applying cryptography to storage is different from applying 
cryptography to networks in both theory and in practice.  The 
attacks are quite feasible with simple home-grown tools and the 
speed of modern computers.   

One alternative is to use full-disk encryption, which can be 
provided by the new generation of hard disks that claim low 
performance overhead [38].  Since this solution defines the disk 
drive as the boundary for encrypted data and the uniqueness of 
keys and IVs, this makes it unclear whether different versions of 
encrypted disk images may reveal crucial information.  Another 
alternative may lay with the narrow-block tweakable [25] 
encryption mode XTS. At the time of this writing, the IEEE 
Security in Storage Working Group (SISWG) has submitted an 
active, approved draft to the IEEE for narrow-block encryption 
P1619/D18 titled “Draft Standard for Cryptographic Protection of 
Data on Block-oriented Storage Devices” which details the use of 
XTS for data at rest.  Further analysis of this new mode may be 
needed. 

Other traditional modes of encryption, such as CBC and ECB, do 
not suffer from the vulnerabilities mentioned in this paper.  
However, they need to be combined with other mechanisms in 
order to overcome structural analysis.  For example, Microsoft’s 
BitLocker encrypts a specified volume sector-by-sector using 
AES in CBC mode with a diffuser called Elephant [11].  The 
diffuser is necessary due to a weakness in CBC mode, which 
allows an attacker to flip an ith bit in the next block’s plaintext by 
flipping the ith bit in the current block’s ciphertext.  This is done 
at the risk of randomizing the current block’s plaintext.  This 
diffuser runs a series of XORs and rotations on words within a 
sector, which enables one flipped bit to cause more random bit 
flips within the same sector.   

Perhaps the encryption scheme used in IBM’s eCryptfs [19] is 
part of the answer.  eCryptFS divides files into encryption extents 
to support fast random access.  IVs are changed for each write, 
and the CBC mode is used within each extent.   However, so far, 
we have found that design assumptions of various solutions are 
typically violated by implementations and unanticipated 
interactions between the encryption layer and the other storage 
layers.  Therefore, unless the design makes no assumptions about 
other system components, it is likely that the weakest point is not 
the file system itself (e.g., RAID parities and backups).  

One possible approach to a solution is to rethink the entire storage 
data path with a clean slate in the context of cryptography.  The 
storage equivalence of a theoretical one-time pad is beyond the 
boundary and lifetime of the system itself.  At one extreme, 
whenever a piece of encrypted data is updated, shifted, or even 
copied, the unique key or the IV of the encrypted data needs to be 
changed.  The encryption component can make no assumptions 
about whether versions of encrypted data can be properly 
removed, once generated.  The resulting characteristics of this 
system will be similar to write-once [37] or copy-on-write [31] 
storage systems.  Unfortunately, such a design is likely to be cost-
prohibitive in terms of performance, storage requirements, and 
key management complexity.   

To relax the design constraints, the interface of storage layers 
needs to become more expressive for communicating and 
controlling ways of handling encrypted data.  For example, a layer 
needs mechanisms to provide verifiable guarantees of removing 
encrypted data and not moving or copying encrypted data.  
However, given the backward compatibility and legacy constraints 
of storage mechanisms such as read-copy-update [14], versioning 
[31], journaling [44], RAIDs [30], and so on, achieving secure 



storage will remain a difficult research area, ripe with challenges 
and opportunities. 

6. RELATED WORK 
Much of the related work on algorithms [18, 27, 42] and 
implementations [40, 9] of cryptanalysis on two-time pads was 
already discussed in Sections 3.1 and 3.2.  Most of the work 
reviewing two-time pad vulnerabilities is explored in the context 
of network communications.   We discuss a similar weakness 
found in the Wired Equivalent Privacy (WEP) protocol, which 
was introduced by the 802.11 standard for wireless 
communications [23] and is based on the believed-to-be-secure 
RC4 stream cipher [34].  Borisov et. al. [4] discuss many security 
weaknesses of WEP, including implementation and architectural 
problems which causes the keystream to be repeated much more 
frequently than necessary. 

WEP expands a secret key and a public per-packet IV into a 
keystream of pseudorandom bits which is XORed with the 
plaintext to produce ciphertext.  Plaintext is recovered by 
producing an identical second keystream and XORing it with the 
ciphertext.  The WEP standard recommends using different IVs 
for each packet, but some implementations use a somewhat less 
than random approach to changing IVs.  For example, the 
particular PCMCIA cards that Borisov et. al. examined reset the 
IV to 0 every time they were re-initialized and incremented the IV 
by 1 for each packet.  Those cards would similarly re-initialize 
every time they were plugged into the laptop.  Thus, keystreams 
corresponding to low-valued IV’s were found frequently.  An 
architectural problem of a small IV field (24 bits) was also found 
in the WEP standard that nearly guarantees that the same IV will 
be used for multiple packets. 

7. CONCLUSION 
Through empirical demonstrations, we have shown that the 
characteristics of storage are fundamentally different from those 
of network, and cryptographic assumptions on the uniqueness of 
keys and IVs relative to content can be violated through 
unanticipated side effects from various storage mechanisms.  In 
particular, we have demonstrated storage mechanisms that can 
convert intended one-time pads into two-time pads: in-place 
updates, backups, inconsistencies between memory and disk 
content, and wear-leveling for flash storage.  Additionally, we 
illustrate the feasibility to exploit two-time pads to extract 
plaintexts efficiently with home-grown tools, bringing attacks 
from the theoretical realm to life.  

While these examples cover a spectrum of storage mechanisms, 
they are still the tip of the iceberg.  Legacy storage mechanisms 
and semantics such as RAIDs, versioning, etc. and their 
interactions with cryptography are yet to be examined.  We 
believe that a clean-slate rethinking of storage requirements and 
usage patterns in the context of cryptography is one direction from 
which to envision a holistic solution.  Expanding the interface of 
individual storage components to better support cryptographic 
assumptions and guarantees is another.   

Given that two-time pads are just one of many security problems 
in the storage domain, a deeper problem lies in the lack of 
fostering of cross-understanding between the storage and security 
domains.  Hopefully, this paper takes steps toward bridging the 
understanding of requirements and constraints between the two 
fields. 
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