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Abstract—As more High-Performance Computing (HPC)
applications that process sensitive data are moving to run on
the public cloud, there is a need for the cloud infrastructure
to provide privacy and integrity support. In this work, we
investigate how to add encryption to all-gather to protect inter-
node communication. This task is challenging since encryption
is often more expensive than communication in contemporary
HPC systems. We derive performance bounds for encrypted all-
gather, and develop new algorithms that meet the theoretical
lower bounds. Our empirical evaluation on production systems
demonstrates that the new algorithms achieve substantially
better performance than the naive approach.

Keywords: Encrypted MPI_Allgather, Algorithm Design,
Security

I. INTRODUCTION

With the ongoing trend of moving HPC applications to

run on the public cloud infrastructures, the security of these

applications has become a rising concern. In particular,

most HPC systems simply send data in the clear, allowing

a network adversary to eavesdrop sensitive information

or even tamper with it. Using an existing network-level

encryption mechanism such as IPSec is a non-solution, as

it severely degrades communication speed [19]. To address

this problem, researchers have considered adding encryption

to the Message Passing Interface (MPI) library [16], [18],

[19], [24], [25], which is a commonly used library in

HPC applications. Still, they all fail to provide an efficient

solution for MPI’s collective routines. To partially bridge

this gap, in this work, we develop efficient algorithms for

encrypting inter-node communication in MPI_Allgather, one

of the most widely used collective operations in scientific

applications [4].

Adding encryption to MPI is challenging, because in con-

temporary HPC systems, encryption is usually more expen-

sive than communication. Figure 1 compares the encryption

throughput and ping-pong throughput on our local Noleland

cluster—a typical HPC cluster today—whose configuration

is described in Section V. In particular, encryption through-

put saturates at about 5,500 MBps, whereas the maximum

ping-pong throughput is twice higher. Given this situation,

clever algorithms for encrypting MPI communication must

be developed to achieve high performance.

Existing work on encrypting MPI [18] only adds encryp-

tion to MPI_Allgather in a naive fashion: (1) each process

encrypts its local data; (2) all processes use the original
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Figure 1: Encryption throughput versus ping-pong through-

put on Noleland (InfiniBand).

MPI_Allgather to gather all ciphertexts at all processes; and

(3) each process decrypts all of the received ciphertexts.

Because of the large gap between encryption and commu-

nication speed, this naive approach performs poorly.

In this work, we derive the performance bounds for the

encrypted all-gather operation, develop new encrypted all-

gather algorithms that meet the theoretical lower bounds, and

run extensive experiments to compare their empirical per-

formance. The results demonstrate that the new algorithms

perform substantially better than the naive approach.

The rest of the paper is organized as follows. In Section II,

we discuss the related work. In Section III, we present the

background of our work, and in Section IV, we explain our

proposed algorithms. In Section V, we present the results of

the performance evaluation, and we conclude our work in

Section VI.

II. RELATED WORK

Since the standardization of MPI, a very large number

of algorithms have been proposed for MPI collectives [7]–

[9], [14], [21]–[23], [26]. Various all-gather algorithms have

been developed, optimizing the performance in different

situations: some are architecture-oblivious [7], [8], [26];

some consider the network topology [6], [12], [15], [29],

[30]; some focus on SMP and multicore clusters [13], [17],

[28]; some use special network features [10]. Encrypted all-

gather adds a new dimension for optimization that has not

been considered by existing schemes.

Most prior papers on encrypting MPI communica-

tion [16], [24], [25] suffer from various security issues,

such as using bad encryption methods and lack of integrity
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support. Recent work [18], [19] provides provable security
by using the Galois Counter Mode (GCM) of encryption [5],

but these papers either focus on point-to-point operations or

only use a naive approach for collective operations. In this

work, we focus on encrypted MPI_Allgather and develop

faster algorithms for this operation.

III. BACKGROUND

ENCRYPTION. In this work, following Naser et al. [18], we

use the GCM encryption scheme [5] that provably offers

both privacy (meaning that adversaries learn no additional

information from the ciphertexts, even with partial knowl-

edge of plaintexts) and integrity (meaning that adversaries

cannot modify ciphertexts without being detected).1 GCM is

a nonce-based encryption scheme, meaning that to encrypt

a plaintext P, one needs to additionally provide a nonce N,

i.e., a public value that must appear at most once per key.

The same nonce N is required for decryption, and thus the

sender needs to send both the nonce N and the ciphertext C
to the receiver. In our implementation, we pick nonces at

random, which is standard-compliant.

ALL-GATHER. In MPI_Allgather, each process initially has

a copy of its own data, and upon completion of the operation,

each process has all data from all processes. Figure 2

illustrates an all-gather operation among 4 processes. This

operation has been extensively investigated and is well

understood. Below, we give a recap of a few algorithms

for MPI_Allgather that appear in various production MPI

libraries such as MPICH and MVAPICH, and perform well

across different platforms.
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Figure 2: The all-gather operation, illustrated for 4 processes.

NOTATIONAL SETUP. We consider MPI_Allgather of m-byte

messages among p processes P0, . . . ,Pp−1 over N nodes.

Without loss of generality, we will assume that p is a

multiple of N. Let �= p/N denote the number of processes

running on each node. We will use the Hockney’s model [11]

to discuss the performance of the algorithms. In this model,

a transmission of m bytes takes α + βm time where α is

the startup cost and β is the per-byte communication cost.

In analyzing algorithms, we assume that processes begin

the operation at the same time, and measure running time

by estimating the time for the last process to complete the

1Actually, the adversary can still replace a ciphertext with a prior one;
this is known as replay attacks. Here we do not consider such attacks.

operation. For simplicity, we will assume that inter-node and

intra-node communication of the same size take the same

amount of time if not specified otherwise. Detailed analyses

of these algorithms can be found in [26].

RING. The communication pattern in the Ring all-gather

algorithm [26] is P0 → P1 → ... → Pp−1 → P0. There are

p−1 iterations of this algorithm. In the first iteration, each

process Pi sends its data to Pi+1, where + is the modular

addition in mod p. In the later iterations, Pi forwards its

current data to Pi+1 and receives new data from Pi−1. After

p−1 iterations, all processes have all the data. The time for

this algorithm is (p−1) ·α +(p−1) ·mβ .

Since the logical traffic pattern is fixed, the performance of

the Ring algorithm can be sensitive to the process mapping.

Most MPI libraries support block order (namely process Pi is

mapped to node �i/N�), and cyclic order (namely process Pi
is mapped to node i mod N). The ring pattern can have

very different characteristics (and thus performance) for

different process mappings, but a rank-ordered version of

this algorithm allows the performance to be consistent across

different mappings [13].

RECURSIVE DOUBLING (RD). In RD [26], the distance

between the sender and receiver processes and the amount

of data they exchange is doubled after each iteration. In

particular, in the b-th iteration, Pi exchanges its data with

Pi+B, where B = 2b−1, for every i such that (i mod 2B)< B.

It takes lg(p) steps for RD to perform all-gather when p is a

power of two, and its running time is lg(p) ·α+(p−1) ·mβ .

If p is not a power of two, extra steps are needed to complete

the operation, but the total number of steps is still bounded

by 2 · lg(p) [26]. Unlike the Ring algorithm, RD cannot re-

arrange the rank order to achieve good performance across

different process mappings. As a result, its performance is

sensitive to process mapping.

HIERARCHICAL. In the Hierarchical algorithm [28], each

node contains a leader process. The algorithm consists of

three steps: (1) all processes in each node perform a local

intra-node gather to collect the data to the leader of that

node; (2) leaders perform an (inter-node) all-gather operation

to distribute all data among leaders; and (3) all processes in

each node perform a local broadcast, with the leader being

the root.

The running time of the Hierarchical algorithm depends

on the collective algorithms in each of the steps. If we

assume that intra-node communication is much cheaper

than inter-node one, then the performance of the Hierarchi-

cal algorithm is dominated by the inter-node all-gather in

step (2). Assuming further than the inter-node all-gather is

implemented via RD, the running time of the Hierarchical

algorithm is about lg(N) ·α +(p− �) ·βm.
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IV. ENCRYPTED MPI_ALLGATHER

We consider encrypted all-gather of m-byte data on p
processes and N nodes, where each node has � = p/N
processes. For simplicity, here we describe the algorithms

and analyze their complexity for the case where p and N are

powers of two, but the algorithms can be slightly modified

to work for any choice of p and N with the same asymptotic

complexity. The general versions of the algorithms that work

for any values of p and N have been implemented and their

performance is reported in Section V. In GCM, a ciphertext

is 28 bytes longer than the corresponding plaintext, but our

analyses will ignore this constant overhead and assume that

ciphertext and plaintext are of the same length for simplicity.

In an encrypted all-gather, inter-node communication

must be encrypted while intra-node one can be sent in the

clear. We assume that N ≥ 2 since a single-node all-gather

does not need encryption. In our analyses, we assume that all

processes start the operation at the same time, and measure

the running time by estimating the time for the last process

to complete the operation.

A. Performance bounds

SETUP. We assume that encryption and decryption cost also

follows the Hockney’s model. That is, encrypting an m-

byte message takes αe + βe ·m time units and decrypting

an m-byte message takes αd +βd ·m time units. Below, we

establish the lower bounds of six key performance metrics

for encrypted all-gather:

(i) rc: the number of communication rounds

(ii) sc: the total size of data to be sent and received in the

critical path,

(iii) re: the number of encryption rounds,

(iv) se: the size of data to be encrypted in the critical path,

(v) rd : the number of decryption rounds, and

(vi) sd : the size of data to be decrypted in the critical path.

With these metrics, an encrypted all-gather algorithm

will have at least tc = rc ·α + sc · β communication time,

te = re ·αe + se ·βe encryption time, and td = rd ·αd + sd ·βd
decryption time. For small messages, the terms rc,re, and

rd will dominate tc, te, and td , respectively. In contrast, for

large messages, the terms sc,se, and sd will determine the

performance. Depending on how communication, encryp-

tion, and decryption overlap, the time for the algorithm will

be between max{tc, te, td} and tc+te+td . Each of these terms

may dominate the performance of the operation. Thus, the

algorithm design must consider all of the three terms.

THE BOUNDS. Table I shows the bounds for encrypted all-

gather. The lower bounds rc and sc for communication

cost are well known [3], [26], but we list them here for

completeness.

Next, we establish lower bounds for encryption cost. Since

N ≥ 2, at least one encrypted inter-node message must be

sent to complete the all-gather, and thus re ≥ 1. In addition,

Table I: Lower bounds for encrypted all-gather of m-byte

data on p processes and N nodes, with � = p/N processes

per node.

Metric rc sc re se rd sd

Bound lg(p) (p−1)m 1 m
⌈

lg(N)
lg(�+1)

⌉
(N −1)m

messages in each node with a total size of � ·m bytes must

be encrypted in order to be sent to every other node. As

there are � processes in a node to collectively encrypt � ·m
bytes of data, there is one process that encrypts at least m
bytes, and thus se ≥ m.

We now derive lower bounds for decryption cost. Since

each node must decrypt all messages from other nodes,

the total data size to be decrypted in each node is at least

(N−1) ·�m. As there are � processes in a node to collectively

decrypt that amount of data, there is one process that

decrypts at least (N−1) ·m bytes, and thus sd ≥ (N−1) ·m.

To bound rd , without loss of generality, we will assume

the following: (1) a process needs exactly one round to

decrypt a ciphertext of any size, and (2) encryption and

communication time will be ignored, meaning that a process

can encrypt and send data of any size with lightning speed.

With these assumptions, before the first round of decryp-

tion, each node only has unencrypted data from T0 = 1 node

(namely itself), and each ciphertext contains unencrypted

data of just T0 node. Since there are � processes in each

node, after the first round of decryption, each node can

decrypt at most � ciphertexts, and obtain unencrypted data

from at most T1 = (�+ 1) · T0 = �+ 1 nodes, including

itself, and each ciphertext now contains unencrypted data

of at most T1 nodes. Likewise, after the second round of

decryption, each node can obtain unencrypted data from at

most T2 = (�+1) ·T1 = (�+1)2 nodes, and each ciphertext

now contains unencrypted data of at most T2 nodes. By

repeating this argument, if the protocol terminates in rd
rounds then at the end of the encrypted all-gather operation,

each node can obtain unencrypted data from at most (�+1)rd

nodes. As each node must gather data from all N nodes, we

must have N ≤ (�+1)rd , and thus rd ≥�lg�+1 N�=
⌈

lg(N)
lg(�+1)

⌉
.

If we treat � as a constant and N as a parameter then rd ∈
Ω(lg(N)). This is a tight bound, as we will later develop an

algorithm (namely O-RD2) whose rd is lg(N). On the other

hand, if � can be arbitrarily large then any lower bound for rd
must involve both N and �, because there is an algorithm

in this paper (namely HS1) that has rd = �N/��, meaning

that rd can be as small as 1 if �≥ N.

PERFORMANCE OF THE NAIVE APPROACH. Consider the

approach in [18] where each process first encrypts its mes-

sage, then calls MPI_Allgather to perform the all-gather op-

eration on the ciphertexts, and finally decrypts the received

ciphertexts. We call this algorithm Naive.
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If we run Naive on top of the ordinary all-gather algo-

rithms of MVAPICH, then it achieves the theoretical lower

bounds for communication cost, meaning that rc = lg(p) and

sc = (p − 1)m. Moreover, since each process encrypts its

own message, we have re = 1 and se = m, and thus Naive

also meets the lower bounds on encryption cost. However,

the situation for decryption cost is different. In particular,

since each process must decrypt p − 1 ciphertexts of m
bytes, rd = p− 1 and sd = (p− 1)m ≈ (N − 1)m · �, which

are much larger than the lower bounds. Our evaluation will

later show that Naive introduces very large overheads to all

message sizes.

B. Faster algorithms for encrypted all-gather
OPPORTUNISTIC ALGORITHMS. The Naive algorithm per-

forms poorly because it unnecessarily sends encrypted data

for intra-node communication, leading to excessive decryp-

tion cost. The Opportunistic algorithm improves the situation

by sending encrypted data only for inter-node communica-

tion. For each intra-node send, the sender is required to send

the corresponding plaintext of the data, meaning that it may

need to first decrypt its message to obtain the plaintext. We

write O-X to refer to the Opportunistic algorithm running

on top of an ordinary all-gather algorithm X ∈ {RD, Ring}.

See Figure 3 for an illustration of O-Ring.

P0
P1 P2

P3
P4

P5

P6
P7P8

Node 0 Node 1

Node 2

encrypt

decrypt

Figure 3: Illustration of O-Ring with p = 9 processes of

block order on N = 3 nodes.

For block-order mapping, the metrics of O-Ring are

shown in Table II. The communication terms rc and sc are

the same as in ordinary Ring-based all-gather. Since the exit

process Pi of each node must encrypt data of every process

Pj with j �= i+ 1, we have re = p− 1 and se = (p− 1)m.

Similarly, rd = p−1 and sd = (p−1)m.
In O-RD with block-order mapping, in each of the last

lg(N) iterations, each process Pi sends many ciphertexts

to another process Pj in a different node. Alternatively, Pi
can merge them into a single ciphertext via decrypting and

then re-encrypting, which corresponds to a variant O-RD2

of O-RD. This variant reduces the number of decryption

rounds on the receiver side, at the cost of increasing the

amount of data to encrypt. Between O-RD2 and O-RD, we

expect O-RD2 to be better for small messages and O-RD to

be better for large ones.

P1

P2

P3

P4

P5

P6

P7

P8

P0

Node 0 Node 1 Node 2

Figure 4: Illustration of the Concurrent algorithm on N = 3

nodes and p = 9 processes. Processes in the same shaded

area run an encrypted all-gather on their data.

For O-RD with block-order mapping, the terms rc and sc
are the same as in ordinary RD-based all-gather. The first

lg(�) = lg(p)− lg(N) iterations only involve intra-node com-

munication, and there is no encryption or decryption. In the

next lg(N) rounds, each process only has to encrypt the data

of its node, and thus re = 1 and se =m�. Moreover, each pro-

cess only decrypts the encrypted copy of data of every other

node, and thus rd = N −1 and sd = (N −1)�m = (p− �)m.

For O-RD2 with block-order mapping, only the last lg(N)
rounds involve encryption or decryption, and in each of these

rounds, each process has to decrypt a ciphertext, and then

encrypt another message. Thus re = rd = lg(N) and se =
(p− �)m. The other terms are the same as O-RD.

The Opportunistic algorithms offer some advantages over

the Naive algorithms, such as allowing communication-

computation overlaps and reducing the total number of

encryption and decryption operations. However, as shown

in Table II, they all fail to substantially improve sd , which

is the main issue with the naive approach.

CONCURRENT ALGORITHMS. We now describe a family of

algorithms that are specifically designed to reduce sd , match-

ing the theoretical lower bound (N − 1) · m. Initially, the

algorithm partitions the p processes into � groups such that

each node has exactly one process per group. For each group,

we perform an encrypted all-gather on the corresponding N
processes with their m-byte data; the encrypted all-gather

is implemented via the family of Opportunistic algorithms.

That is, we have � concurrent encrypted sub-all-gathers. This

step brings all data to every node, but in each node, data are

still spread across its � processes. Next, each node performs

a local ordinary all-gather on its � processes.

Figure 4 shows an example where 9 processes run on 3

nodes. Initially, we partition the processes to three groups

{P0,P3,P6}, {P1,P4,P7}, and {P2,P5,P8}, and each group

performs an encrypted sub-all-gather. Then each node runs

a local ordinary all-gather on its three processes.

We write C-Ring to refer to the Concurrent algorithm
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Table II: Performance of encrypted all-gather algorithms on m-byte messages, p processes on N nodes with �= p/N processes

per node. We assume that p and N are powers of two and block-order mapping is used for Opportunistic algorithms. For

HS1 and HS2, we assume that the RD algorithm is used for the inter-node all-gather, and ignore the cost of intra-node

communication.

Naive O-Ring O-RD O-RD2 C-Ring C-RD HS1 HS2

rc lg(p) p−1 lg(p) lg(p) N + �−2 lg(p) lg(N) lg(N)

sc (p−1)m (p−1)m (p−1)m (p−1)m (p−1)m (p−1)m (p− �)m (p− �)m
re 1 p−1 1 lg(N) 1 1 1 1

se m (p−1)m �m (p− �)m m m �m m
rd p−1 p−1 p− � lg(N) N −1 N −1 �N/�� N −1

sd (p−1)m (p−1)m (p− �)m (p− �)m (N −1)m (N −1)m max{N, �} ·m (N −1)m

where the encrypted sub-all-gathers are implemented via the

Opportunistic approach and the ranked-ordered version of

the Ring algorithm in [13]. Let C-RD be the Concurrent

algorithm where the encrypted sub-all-gathers are imple-

mented via the O-RD.

For C-Ring, in the first step, the number of communication

rounds is N − 1; each process communicates (N − 1)m
bytes; the number of encryption rounds is 1; each process

encrypts m bytes; the number of decryption rounds is N−1;

and each process decrypts (N − 1)m bytes. In the second

step, the number of communication rounds is �-1; each

process communicates (�− 1)Nm = (p − N)m bytes; and

there is no encryption or decryption. Summing up, we obtain

the complexity of C-Ring as shown in Table II.

For C-RD, in the first step, the number of communication

rounds is lg(N); each process communicates (N − 1)m
bytes; the number of encryption round is 1; the amount of

encrypted data is m bytes; the number of decryption rounds

is N−1; and the amount of decrypted data is (N−1)m bytes.

In the second step, the number of rounds of communication

is lg(�); each process communicates (�−1)Nm = (p−N)m
bytes; and there is no encryption or decryption. Summing

up, we obtain the complexity of C-RD as shown in Table II.

For Naive and Opportunistic algorithms, the size of the

encrypted and decrypted data is Θ(pm). In contrast, for

C-Ring and C-RD, the size of the encrypted and decrypted

data is only Θ(Nm), and their other metrics are comparable

to those of Naive. Thus, both C-Ring and C-RD are expected

to be significantly better than Naive for sufficiently large

data, assuming that � is fairly large, say � = 8. Moreover,

on contemporary HPC systems, a single core usually does

not have enough computing power to fully utilize the net-

work link. The concurrent sub-all-gathers in the Concurrent

algorithm can also better utilize the network link bandwidth.

HIERARCHICAL SHARED-MEMORY ALGORITHMS. Recall

that both C-Ring and C-RD have rather large rd = N − 1,

and thus are not competitive for small messages. Our Hierar-

chical Shared-memory (HS1) algorithm in contrast achieves

the optimal sd , yet reduces rd to N/�. Moreover, as shown

later in the experiments, HS1 has even cheaper underlying

communication cost. As a result, it would be competitive for

both small and large messages. The scheme HS1 consists of

the following steps:

1) Each node performs an unencrypted gather to collect

the data in the node to a leader process, using a shared-

memory plaintext buffer.

2) Each leader encrypts its �m-byte data, and runs an

ordinary all-gather on ciphertexts among the N leaders,

and the results are stored in a shared-memory ciphertext

buffer.

3) All processes in each node jointly decrypt the N − 1

ciphertexts from other nodes, and place the results in

the shared-memory plaintext buffer.

4) All processes in each node copy the results from the

shared-memory plaintext buffer to the user buffer.

Assuming that the local data transfer to a shared memory

is free, we will ignore the cost in Steps 1 and 4. Assume

further that RD is used for the inter-node all-gather in Step 3.

Then the communication cost is only from the inter-node all-

gather among N nodes on �m-byte messages, meaning that

rc = lg(N) and sc = (p− �)m. Here rc and sc are smaller

than the lower bounds in Table I because we ignore the data

transfer cost to shared memory buffers. As the encryption is

performed once by each leader, re = 1 and se = �m. Since

each process decrypts up to �(N −1)/�� ciphertexts of �m-

byte messages, rd = �(N −1)/�� and sd = �(N −1)/�� · �m.

As N and � are powers of two, we can simplify these terms

to rd = �N/�� and sd = max{N, �} ·m.
Although HS1 reduces rd significantly, it has higher se

than the Concurrent algorithms as only leaders perform

encryption. We also consider the following variant HS2:

1) Each process encrypts its m-byte data and puts the

ciphertext to a shared-memory ciphertext buffer.

2) Each leader runs an ordinary all-gather on ciphertexts

among the N leaders, and the results are stored in a

shared-memory ciphertext buffer.

3) All processes in each node jointly decrypt the (N−1)�
ciphertexts from other nodes, and place the results in a

shared-memory plaintext buffer.

4) All processes in each node copy the results from the

shared-memory plaintext buffer to the user buffer.
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The communication cost of HS2 is the same as HS1. Each

process however only encrypts its own data, and thus re = 1

and se = m. Since all processes on each node have to jointly

decrypt (N − 1)� ciphertexts of m-byte data, rd = (N − 1)
and sd = (N − 1)m. Thus HS2 improves se at the cost of

increasing rd . We therefore expect HS2 to perform better

than HS1 for large messages, but the latter is a more suitable

option for small messages.

V. PERFORMANCE STUDY

A. System setup

We implemented all of the encrypted all-gather algorithms

in Table II for MVAPICH2-2.3.3, compiled with the default

MVAPICH compilation flags and optimization level O2. We

used the AES-GCM-128 encryption scheme in the Bor-

ingSSL cryptographic library [2]; this library was compiled

under the default settings and linked with MPI during the

compilation of MVAPICH2-2.3.3.

The experiments were performed on two systems: a

local Noleland cluster and the Bridges-2 supercomputer at

Pittsburgh Supercomputing Center (PSC) [1]. The Noleland

system is a cluster at Florida State University of Intel Xeon

Gold 6130 CPUs with 2.10 GHz frequency. Each node has

32 cores, and 192GB DDR4-2666 RAM. This cluster runs

CentOS-7, and the underlying network is a 100Gbps Mel-

lanox MT28908 Infiniband. We allocated nodes manually,

and the same nodes were chosen for all measurements on

this cluster.

We also used the PSC Bridges-2 supercomputer with

Regular Memory partition. This system has 504 nodes, each

equipped with 2 AMD EPYC 7742 CPUs (with 64 cores

and 128 threads each). Among those nodes, 448 ones have

256GB RAM and 16 nodes are equipped with 512GB RAM.

We use the nodes of 256GB RAM for our experiments

in this work. This supercomputer uses 200Gbps Mellanox

ConnectX-6-HDR Infiniband and runs CentOS-8.

We used the OSU_Allgather benchmark from the OSU

benchmark suite [20] to measure the latency of the all-

gather operation with different algorithms and message sizes.

Each reported latency is an average of 10 runs. In most

experiments, the standard deviation is within 10% of the

reported mean. In some rare cases the standard deviation is

higher, but still within 25% of the reported mean.

B. Results on Noleland

Table III shows the performance of the baseline unen-

crypted scheme (the MPI_Allgather routine in MVAPICH2-

2.3.3), the naive encrypted version (the naive approach

with the MPI_Allgather in MVAPICH2-2.3.3), and the best-

performing encrypted algorithm for p = 128 and N = 8

with a block-order process mapping. The best-performing

algorithms are also listed. The performance of the baseline

is given as the latency in micro-seconds. The performance

of Naive and the best-performing encrypted scheme is given

Table III: Performance of the unencrypted MPI, Naive, and

the best-performing algorithm on Noleland (p = 128 and

N = 8, with block-order mapping). The third and fourth

columns show the overhead (%) of Naive and the best

encrypted all-gather algorithm (listed in the last column),

compared to unencrypted MPI, respectively.

Size Latency (μs)
of MPI

Overhead
of Naive

Overhead of
best scheme

Best
scheme

1B 10.64 293.20 31.49 O-RD2
2B 9.26 342.86 51.49 HS1
4B 9.35 348.05 51.50 HS1
8B 9.52 364.69 55.96 O-RD
16B 9.91 309.57 53.06 O-RD
32B 10.87 301.63 50.86 O-RD
64B 12.77 265.33 39.14 O-RD
1KB 56.58 111.57 9.91 O-RD
2KB 108.43 95.54 −0.05 C-RD
4KB 227.00 75.93 −16.02 C-RD
8KB 407.83 92.21 6.25 C-Ring
16KB 1602.35 59.35 −45.89 HS2
32KB 2522.14 87.22 −33.54 HS2
256KB 15902.40 136.51 −12.42 HS2
2MB 136604.31 137.50 −13.97 HS2

as the overhead in percentage (%) with respect to the

baseline. The negative overhead for a scheme means that

the scheme runs faster than the baseline. For example, for

4KB message size, the baseline latency is 227.00 μs; the

overhead for Naive is 75.93% and thus the latency for Naive

is 227.00 · (1+ 0.7593) = 339.36 μs; the overhead for the

best scheme is −16.02% and thus the latency for the best

scheme is 227.00 · (1−0.1602) = 190.63 μs.

As shown in Table III, for block-order mapping, compared

to unencrypted MPI, Naive has very significant overheads

across all message sizes. In contrast, our algorithms have

much smaller overheads thanks to the minimal use of

encryption and decryption, and the overlapping of commu-

nication and computation. For messages larger than 2KB

(except for 8KB), they even outperform unencrypted MPI,

because the underlying communication cost of HS1,C-Ring,
and C-RD is cheaper than that of MPI, as shown in Figure 5.

Specifically, for small messages, O-RD2, O-RD and HS1

are generally the best, because of their small number of en-

cryption, decryption, and communication rounds. For large

messages, C-Ring, HS1, and HS2 are the best thanks to their

small amount of encrypted and decrypted data. HS2 and

HS1 in most cases perform better than C-Ring, as they have

smaller communication cost. As expected, HS2 performs

better than HS1 due to its smaller amount of encrypted

data. C-RD achieves the best performance for medium sized

messages.

On the other hand, MPI’s default algorithms are sensitive

to process mapping. For cyclic-order mapping, as shown in

Table IV, for messages larger than 2KB, unencrypted MPI’s

performance degrades significantly compared to block-order

mapping. For example, for 256KB all-gather, MPI’s latency

Authorized licensed use limited to: Florida State University. Downloaded on August 28,2021 at 19:27:58 UTC from IEEE Xplore.  Restrictions apply. 



Table IV: Performance of the unencrypted MPI, Naive, and

the best-performing algorithm on Noleland (p = 128 and

N = 8, with cyclic-order mapping).

Size Latency (μs)
of MPI

Overhead
of Naive

Overhead of
best scheme

Best
scheme

1B 10.27 305.67 47.70 O-RD
32B 10.18 324.35 51.21 O-RD
1KB 50.10 128.59 11.54 O-RD
2KB 93.99 104.73 7.33 O-RD
4KB 862.26 18.21 −76.50 O-RD2
8KB 1633.01 20.79 −75.16 HS2
32KB 5541.96 50.85 −63.54 HS2
64KB 10889.97 44.12 −66.45 C-Ring
256KB 43355.27 38.92 −61.86 C-Ring
2MB 346830.02 39.32 −60.92 C-Ring

is 15.9 ms with the block-order mapping, but rises to

43.3 ms with the cyclic-order mapping. Therefore, Naive has

better relative overheads in this case, because encryption and

decryption are oblivious to process mapping. In addition, as

mentioned in Section III, the RD algorithm is sensitive to

process mapping, making C-RD somewhat sensitive. The

performance of HS1 and HS2 also suffers, because an extra

copy is needed for maintaining the correct order of messages

when mapping is not in block-order. In contrast, C-Ring is

oblivious to process mapping, and thus it becomes the best

algorithm for large messages in this setting.

THE UNDERLYING COMMUNICATION COST. To understand

the performance of encrypted MPI_Allgather algorithms,

we first examine the performance of their unencrypted

counterparts. We note that MVAPICH 2.3.3 on Noleland

uses RD for small messages and Ring for large messages.

For simplicity, we use the same name of each encrypted all-

gather algorithm to refer to its unencrypted counterpart, and

only consider the most competitive and relevant algorithms

for each range of message sizes. Since the unencrypted

versions of HS1 and HS2 are identical, we only report the

results of the former scheme.

Figure 5 gives the performance of different unencrypted

all-gather algorithms with p = 128, N = 8, and block-

order mapping. In general, the MVAPICH implementation

is still the best for small messages, but it is considerably

outperformed by the best algorithms for medium and large

messages. A similar trend is observed on PSC Bridges-2.

Figure 6 reports the performance of unencrypted all-gather

algorithms with p = 128, N = 8, and cyclic-order mapping.

As mentioned in Section III, the RD algorithm is sensitive

to the process mapping, resulting in a performance drop of

the MVAPICH implementation and C-RD when we move

from block-order mapping to cyclic-order mapping. The

performance of the HS1 algorithm also suffers, because

in its Step 4, (i) for block-order mapping, each process

can directly copy the entire shared-memory plaintext buffer

to the user buffer, but (ii) for cyclic-order mapping, it
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Figure 5: Performance of unencrypted counterpart of all-

gather algorithms on Noleland, with block-order mapping.

instead needs to perform p memory copies to re-arrange

the messages to proper locations in the user buffer.

PERFORMANCE OF ENCRYPTED ALGORITHMS. Figure 7

shows the performance of encrypted all-gather algorithms

with p = 128, N = 8, and block-order mapping. For small

messages, O-RD has the overall best performance. This is

consistent with the trend in Figure 5, as the underlying

unencrypted version of O-RD is exactly the MVAPICH

implementation for small messages. For medium and large

messages, C-Ring, C-RD, HS1, and HS2 have comparable

performance, but HS2 performs slightly better in most

cases. This happens because (i) HS2 has cheaper underlying

communication cost than C-Ring or C-RD, as shown in

Figure 5, and the three schemes have the same se and sd , and

(ii) as expected, HS2 is better than HS1 for large messages

thanks to its smaller se.

We note that C-Ring, C-RD, and HS2, with a decryp-

tion size of (N − 1)m, have very low overheads for large

messages with respect to their corresponding unencrypted

algorithms. For example, for 1MB message size, latency
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Figure 6: Performance of unencrypted counterpart of all-

gather algorithms on Noleland, with cyclic-order mapping.

of the unencrypted C-Ring is 63.3 ms while latency of

the encrypted C-Ring is 67.6 ms, meaning 6.8% overhead;

latency of the unencrypted C-RD is 67.1 ms while latency

of the encrypted C-RD is 67.6 ms, meaning 0.7% overhead;

latency of the unencrypted HS2 is 51.5 ms while latency

of the encrypted HS2 is 58.2 ms, meaning 13.0% overhead.

This is consistent with the theoretical analysis. For these

algorithms, each node must receive (p−1)m messages while

only decrypting (N − 1)m = (p−1)m
� ciphertexts. In other

words, the communication cost will dominate the operation

when � is large. In contemporary clusters, �—the number

of processes per node—is usually a large value. In such

a system, with any of these algorithms, the overhead for

encryption and decryption is reduced to almost negligible

for large messages.

NON-POWER-OF-TWO SETTINGS. Table V reports the per-

formance of encrypted all-gather algorithms for N = 91 and

p= 7 and block-order mapping. As mentioned in Section III,

when N and p are not powers of two, the RD algorithm

has to take some extra steps, although the total cost is still
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Figure 7: Performance of encrypted all-gather algorithms

on Noleland, with block-order mapping.

Table V: Performance of the unencrypted MPI, Naive, and

the best-performing algorithm on Noleland (p = 91 and

N = 7, with block-order mapping).

Size Latency (μs)
of MPI

Overhead
of Naive

Overhead of
best scheme

Best
scheme

1B 15.85 166.60 −0.49 HS1
32B 18.97 135.55 −6.05 HS1
256B 47.46 65.98 −33.78 HS1
512B 76.64 48.20 −40.40 C-RD
1KB 138.91 35.45 −54.35 C-RD
4KB 154.49 74.46 5.42 C-RD
8KB 261.20 91.08 15.43 C-Ring
32KB 1586.33 77.23 −32.57 C-Ring
64KB 3056.25 74.10 −30.56 HS2
256KB 11068.30 91.04 −19.26 HS2
2MB 92496.05 87.95 −19.44 HS2

bounded by 2 · lg(p). As a result, the performance of RD-

based encrypted algorithms decreases in this setting. For

messages of 8KB and more, the results are similar to those in

Table III (when N = 8 and p = 128) because the dominating

encrypted algorithms in both cases are Ring-based.
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Figure 8: Performance of encrypted all-gather algorithms

on Noleland, with cyclic-order mapping.

C. Results on PSC Bridges-2

We ran large-scale experiments on the Bridges-2 su-

percomputer at PSC, and observed similar trends in the

results. Table VI shows the performance of unencrypted

MPI, Naive, and our best-performing algorithms on Bridges-

2, with p = 1024 and N = 16. In Bridges-2, a default

mapping is used; for our experiments, processes were in

block-order mapping.

Again, Naive has heavy overheads across all message

sizes, but the penalty on small messages is the most se-

vere. Our algorithms significantly improve the performance

of Naive, and for messages of 1KB or more, the best-

performing algorithm can even beat unencrypted MPI. We

observe that on Bridges-2, the shared-memory algorithms

are the best algorithms overall. HS1 outperforms other

algorithms for small messages up to 1KB (except for 512B

where O-RD is the best algorithm). For messages of size

2KB or more, HS2 is the best algorithm. In this range of

messages, the overhead of Naive over the default MVAPICH

algorithm decreases, but the overhead of our best-performing

algorithm also drops, which makes it significantly better than

the Naive approach. Other results have also been collected,

Table VI: Performance of on Bridges-2 for p = 1024 and

N = 16.

Size Latency (μs)
of MPI

Overhead
of Naive

Overhead of
best scheme

Best
scheme

1B 118.57 344.50 −32.47 HS1
64B 167.21 201.26 16.43 HS1
128B 250.93 512.47 2.22 HS1
512B 750.43 265.85 16.20 O-RD
1KB 1438.99 191.99 −3.15 HS1
2KB 6882.52 11.18 −71.25 HS2
16KB 62871.60 21.52 −78.10 HS2
64KB 250752.32 20.88 −80.14 HS2
256KB 1007353.08 20.85 −79.41 HS2
512KB 2007558.81 20.75 −79.57 HS2

and the trends on Bridges-2 are the same as those on

Noleland. We omit those results due to a lack of space.

VI. CONCLUSION

We derive lower bounds on six important performance

metrics for encrypted all-gather, and develop new encrypted

all-gather algorithms that match these theoretical bounds.

The optimizations in the algorithm design significantly re-

duce the encryption and decryption cost, compared to the

naive approach. In particular, for clusters where each node

runs many processes, the encryption and decryption over-

head in our algorithms are negligible for large messages. Our

algorithms even outperform the unencrypted MPI_Allgather

in many cases, which indicates that the unencrypted all-

gather routines need to be updated to achieve the best

performance on modern HPC systems.
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