
An Empirical Study of Cryptographic Libraries for
MPI Communications

Abu Naser
Department of Computer Science

Florida State University

Tallahassee, FL, USA

naser@cs.fsu.edu

Mohsen Gavahi
Department of Computer Science

Florida State University

Tallahassee, FL, USA

gavahi@cs.fsu.edu

Cong Wu
Department of Computer Science

Florida State University

Tallahassee, FL, USA

wu@cs.fsu.edu

Viet Tung Hoang
Department of Computer Science

Florida State University

Tallahassee, USA

tvhoang@cs.fsu.edu

Zhi Wang
Department of Computer Science

Florida State University

Tallahassee, FL, USA

zwang@cs.fsu.edu

Xin Yuan
Department of Computer Science

Florida State University

Tallahassee, FL, USA

xyuan@cs.fsu.edu

Abstract—As High Performance Computing (HPC) applica-
tions with data security requirements are increasingly moving to
execute in the public cloud, there is a demand that the cloud
infrastructure for HPC should support privacy and integrity.
Incorporating privacy and integrity mechanisms in the commu-
nication infrastructure of today’s public cloud is challenging
because recent advances in the networking infrastructure in
data centers have shifted the communication bottleneck from the
network links to the network end points and because encryption
is computationally intensive.

In this work, we consider incorporating encryption to support
privacy and integrity in the Message Passing Interface (MPI)
library, which is widely used in HPC applications. We empirically
study four contemporary cryptographic libraries, OpenSSL,
BoringSSL, Libsodium, and CryptoPP using micro-benchmarks
and NAS parallel benchmarks to evaluate their overheads for en-
crypting MPI messages on two different networking technologies,
10Gbps Ethernet and 40Gbps InfiniBand. The results indicate
that (1) the performance differs drastically across cryptographic
libraries, and (2) effectively supporting privacy and integrity
in MPI communications on high speed data center networks is
challenging—even with the most efficient cryptographic library,
encryption can still introduce very significant overheads in some
scenarios such as a single MPI communication operation on
InfiniBand, but (3) the overall overhead may not be prohibitive
for practical uses since there can be multiple concurrent com-
munications.

Index Terms—MPI, encrypted communication, benchmark.

This material is based upon work supported by the National Science
Foundation under Grants CICI-1738912, CRI-1822737, CNS-1453020, and
CRII-1755539. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation. This work used the
Extreme Science and Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation grant number ACI-1548562. This
work used the XSEDE Bridges resource at the Pittsburgh Supercomputing
Center (PSC) through allocation TG-ECS190004.

I. INTRODUCTION

High performance computing (HPC) applications often pro-

cess highly-sensitive data, such as medical, financial, and

engineering documents. As more and more HPC applications

are executing in the public cloud, there is a pressing need that

the cloud infrastructure for HPC should provide privacy and

integrity. One important component of the cloud infrastructure

for HPC is the Message Passing Interface (MPI) library,

the de facto and vastly popular communication library for

message passing applications. For MPI applications to run with

strong security guarantees in the public cloud, privacy and

integrity mechanisms based on modern cryptographic theories

and algorithms must be incorporated in the MPI library.

Unfortunately, the existing efforts to retrofit MPI libraries

with encryption contain severe security flaws. For example,

ES-MPICH2 [1], the first such MPI library, uses the weak

ECB (Electronic Codebook) mode of operation that has known

vulnerabilities [2, page 89]. In addition, no existing encrypted

MPI libraries provide meaningful data integrity, meaning that

data could potentially be modified without being detected.

Consequently, it is urgent to revisit the problem by applying

the state-of-art cryptographic theory and practice to properly

encrypt MPI communications.

In recent years, significant efforts have been put to im-

prove the security, usability, and performance of crypto-

graphic libraries. Popular cryptographic libraries, including

OpenSSL [3], BoringSSL [4], Libsodium [5] and Cryp-

toPP [6], all received intensive security review, and some

(OpenSSL and CryptoPP) even passed the Federal Information

Processing Standards (FIPS) 140-2 validation. In addition,

recent processors from all major CPU vendors have introduced

hardware support to speed up cryptographic operations (e.g.,

Intel AES-NI instructions to accelerate the AES algorithm,

or the x86 CLMUL instruction set to improve the speed of

finite-field multiplications). All of the popular cryptographic978-1-7281-4734-5/19/$31.00 ©2019 IEEE

libraries now support hardware-accelerated cryptographic op-

erations. Nevertheless, those libraries have different usability,

functionality, and performance; and it is unclear which library

is the best option for different types of MPI communication

paradigms. We thus need to understand how the selection of

cryptographic libraries can affect the security and performance

of common MPI applications.

The advances in the networking infrastructure in data

centers have shifted the communication bottleneck from the

network links to the network end-points. As such, when

incorporating security mechanisms in the MPI library, the

additional computation in the cryptographic operations likely

will introduce significant overheads to MPI communications,

detrimental to the performance. It is thus critical to understand

the overheads introduced in the cryptographic operations and

to find the most efficient cryptographic library for MPI com-

munications.

In this work, we develop encrypted MPI libraries that

are built on top of four cryptographic libraries OpenSSL,

BoringSSL, Libsodium, and CryptoPP. Using these libraries,

we empirically evaluate the performance of encrypted MPI

communications with micro benchmarks and NAS parallel

benchmarks [7] on two networking technologies, 10Gbps

Ethernet and 40Gbps InfiniBand QDR. The main conclusions

include the following:

• Different cryptographic libraries result in very different

overheads. Specifically, OpenSSL and BoringSSL are on

par with each other; and their performance is much higher

than that of Libsodium and CryptoPP, on both Ethernet

and InfiniBand.

• For individual communication, encrypted MPI introduces

relative small overhead for small messages and large

overhead for large messages. For example, on the 10Gbps

Ethernet, even for BoringSSL, encrypted MPI under

the AES-GCM encryption scheme [8] introduces 5.9%

overhead for 256-byte messages and 78.3% for 2MB

messages in the ping-pong test. On the 40Gbps Infini-

Band, BoringSSL introduces 80.9% overhead for 256-

byte messages and 215.2% overhead for 2MB messages

in the ping-pong test. This calls for developing new

techniques to optimize the combination of encryption and

MPI communications.

• For more practical scenarios, the cryptographic overhead

is not as significant. On average, BoringSSL only intro-

duces 12.75% overhead on Ethernet and 17.93% overhead

on InfiniBand for NAS parallel benchmarks (class C

running on 64 processes and 8 nodes).

II. RELATED WORK

There have been a few proposed systems for adding en-

cryption to MPI libraries, and some have even been imple-

mented [1], [9]–[12]. Existing systems, however, suffer from

notable security vulnerabilities, as we will elaborate below.

First, privacy—the main goal of those systems—is seriously

flawed because of the insecure crypto algorithms or the misuse

of crypto algorithms. For example, ES-MPICH2 [1] is the first

MPI library that integrates encryption to MPI communication,

but its implementation is based on a weak encryption scheme,

the Electronic Codebook (ECB) mode of operation. While

ECB is still included in several standards, such as NIST SP

800-38A, ANSI X3.106, and ISO 8732, it has been known

to be insecure [2, page 89]. For another example of an

insecure choice of encryption, consider the system VAN-

MPICH2 [11] that relies on one-time pads for encryption.

It however implements one-time pads as substrings of a big

key K . Thus when encrypting many large messages, it is likely

that there are two messages M1 and M2 whose one-time pads

L1 and L2 are overlapping substrings of K , say the last 8

KB of L1 is also the first 8 KB of L2. In that case, one can

obtain the xor of X1 and X2, where X1 is the last 8 KB of

M1 and X2 is the first 8 KB of M2. If X1 and X2 are English

texts there are known methods to recover them from their xor

value [13].

Next, no existing system provides meaningful data integrity.

Some do suggest that integrity may be added via digital

signatures [1], [11], but this is impractical because all exist-

ing digital signature schemes are expensive. Some consider

encrypting each message together with a checksum (obtained

via a cryptographic hash function such as SHA-2) [10], but

this approach does not provide integrity if one uses classical

encryption schemes such as the Cipher Block Chaining (CBC)

mode of encryption [14]. Others believe that encrypting data

via the ECB mode also provides integrity [1], [9], but it is

well-known that classical encryption schemes such as ECB or

CBC provide no integrity at all [2, page 109].
We note that the insecurity of the systems above has never

been realized in the literature. MPI communication therefore

is in dire need of strong encryption that provides both privacy

and integrity. In addition, in recent years, hardware support

for efficient cryptographic operations, such as Intel’s AES-

NI instructions, has become ubiquitous. These advances are

fully exploited by modern cryptographic libraries to improve

encryption speed. Yet there is currently a lack of understanding

of how these libraries perform in the MPI environment. Our

paper fills this gap, giving (i) the first implementation that

properly encrypts MPI communication to provide genuine

privacy and integrity, and (ii) a systematic benchmarking to

investigate the overheads of modern cryptographic libraries

for MPI communication on contemporary clusters. Unlike

prior work with insecure, ad hoc encryption schemes, our

implementation is based on the Galois-Counter Mode (GCM)

that provably delivers both privacy and integrity [15].

III. BACKGROUND

A. Encryption Schemes

A (symmetric) encryption scheme is a triple of algorithms

(Gen,Enc,Dec). Initially, the sender and receiver somehow

manage to share a secret key K that is randomly generated

by Gen. Each time the sender wants to send a message M

to the receiver, she would encrypt C ← Enc(K,M), and

then send the ciphertext C in the clear. The receiver, upon

receiving C, will decrypt M ← Dec(K,C). An encryption

������ �����	��

N

Samp

Enc
K

P

C

N

Dec
K

C

C

N

P

Fig. 1: Encrypted communication with AES-GCM.

scheme is commonly built on top of a blockcipher (such as

AES and 3DES).

Standard documents, such as NIST SP 800-38A [16]

and 800-38D [8], specify several modes of encryption.

Many of them, such as Electronic Codebook (ECB), Cipher

Block Chaining (CBC), Counter (CTR), Galois/Counter Mode

(GCM), and Counter with CBC-MAC (CCM), are well-known

and widely used. However, these schemes are not equal in

security and ease of correct use. The ECB mode, for example,

is insecure [2]. CBC and CTR modes provide only privacy,

meaning that the adversary cannot even distinguish ciphertexts

of its chosen messages with those of uniformly random

messages of the same length. They however do not provide

data integrity in the sense that the adversary cannot modify

ciphertexts without detection.1 Among the standardized en-

cryption schemes, only GCM and CCM satisfy both privacy

and integrity, but GCM is the faster one [17]. Therefore, in

this paper, we will focus on GCM; one does not need to know

technical details of GCM to understand our paper.

According to NIST SP 800-38D, the blockcipher for GCM

must be AES, and correspondingly, the key length is either

128, 192, or 256 bits. The longer key length means better

security against brute-force attacks, but also slower speed. In

this paper, we consider both 128-bit key (the most efficient

version) and 256-bit key (the most secure one). AES-GCM is

a highly efficient scheme [17], provably meeting both privacy

and integrity [15]. Due to its strength, AES-GCM appears in

several network protocols, such as SSH, IPSec, and TLS.

Syntactically, AES-GCM is a nonce-based encryption

scheme, meaning that to encrypt plaintext P , one needs to

additionally provide a nonce N , i.e., a public value that

must appear at most once per key. The same nonce N is

required for decryption, and thus the sender needs to send

both the nonce N and the ciphertext C to the receiver. See

Fig. 1 for an illustration of the encrypted communication via

GCM. In AES-GCM, nonces are 12-byte long, and one often

implements them via a counter, or pick them uniformly at

random. In addition, each ciphertext is 16-byte longer than

the corresponding plaintext, as it includes a 16-byte tag to

determine whether the ciphertext is valid.

1Actually, the adversary can still replace a ciphertext with a prior one; this
is known as replay attack. Here we do not consider such attacks.

B. Cryptographic Libraries

In our implementation, we consider the following crypto-

graphic libraries: OpenSSL [3], BoringSSL [4], Libsodium [5],

and CryptoPP [6]. They are all in the public domain, are

widely used, and have received substantial scrutiny from the

security community.

OpenSSL is one of the most popular cryptographic libraries,

providing a widely used implementation of the Transport

Layer Security (TLS) and Secure Sockets Layer (SSL) pro-

tocols. Due to its importance, there has been a long line

of work in checking the security of OpenSSL, resulting in

the discovery of several important vulnerabilities, such as

the notorious Heartbleed bug [18]. As a popular commercial-

grade toolkit, OpenSSL is used by many systems. BoringSSL

is Google’s fork of OpenSSL, providing the SSL library in

Chrome/Chromium and Android OS.

Libsodium is a well-known cryptographic library that aims

for security and ease of correct use. It provides many benefits

such as portability, cross-compilability, and API-compatibility,

and supports bindings for all common programming lan-

guages. As a result, Libsodium has been used in a number of

applications, such as the cryptocurrency Zcash and Facebook’s

OpenR (a distributed platform for building autonomic network

functions). It however only supports AES-GCM with 256-bit

keys.

CryptoPP is another popular open-source cryptographic

library for C++. It is widely adopted in both academic and

commercial usage, including WinSSHD (an SSH server for

Windows), Steam (a digital distribution platform purchas-

ing and playing video games), and Microsoft SharePoint

Workspace (a document collaboration software).

IV. MPI WITH ENCRYPTED COMMUNICATION

We developed two MPI libraries whose communication is

encrypted via AES-GCM (for both 128-bit and 256-bit keys);

one library is based on MPICH-3.2.1 for Ethernet and the other

on MVAPICH2-2.3 for InfiniBand. Specifically, encryption is

added to the following MPI routines:

• Point-to-point: MPI_Send, MPI_Recv, MPI_ISend,

MPI_IRecv, MPI_Wait, and MPI_Waitall.

• Collective: MPI_Allgather, MPI_Alltoall,

MPI_Alltoallv, and MPI_Bcast.

The underlying cryptographic library is user-selectable among

OpenSSL, BoringSSL, Libsodium, and CryptoPP. With en-

cryption incorporated at the MPI layer, our prototypes can

run on top of any underlying network. As our main focus of

this work is to benchmark the performance of encrypted MPI

libraries, we did not implement a key distribution mechanism;

this is left as a future work. In our experiments, the encryption

key was hardcoded in the source code.

To illustrate the high-level ideas of our implementation, con-

sider the pseudocode of our Encrypted_Alltoall routine

in Algorithm 1. Within this code, we use RAND_bytes(s)
to denote the sampling of a uniformly random s-byte string,

and X ‖Y for the concatenation of two strings X and Y . The

1 Input: Two arrays sendbuf and recvbuf , each of

n+ 1 elements that are ℓ-byte long.

2 Parameter: A key K

/* Create ciphertext buffers */

3 Initialize two arrays enc sendbuf and enc recvbuf ,

each of n+ 1 elements that are (ℓ+ 28)-byte long.

4 for i← 0 to n do

/* Get a random 12-byte nonce */

5 Ni ← RAND_bytes(12)
/* Encrypt via AES-GCM */

6 Ci ← Enc(K,Ni, sendbuf [i])
/* Concatenate nonce and ctx */

7 enc sendbuf [i]← Ni ‖Ci

8 end

9 MPI_Alltoall(enc sendbuf , enc recvbuf)

10 for i← 0 to n do

/* Parse to nonce/ciphertext */

11 N∗

i
‖C∗

i
← enc recvbuf [i]

/* Decrypt via AES-GCM */

12 recvbuf [i]← Dec(K,N∗

i
, C∗

i
)

13 end

Algorithm 1: Encrypted_Alltoall routine.

encryption and decryption routines of AES-GCM are Enc and

Dec, respectively. Intuitively, the ordinary MPI_Alltoall

is used to send/receive just ciphertexts and their correspond-

ing nonces. That is, one would need to encrypt the send-

ing messages before calling MPI_Alltoall—each message

with a fresh random nonce, and then decrypt the receiving

ciphertexts. If a sending message is ℓ-byte long then the

corresponding data that MPI_Alltoall sends is (ℓ + 28)-
byte long, since it consists of (i) a 12-byte nonce, and (ii) a

ciphertext that is 16-byte longer than its plaintext.

We note that although the pseudocode above seems straight-

forward, in an actual implementation, there are some low-

level subtleties when one has to deal with non-blocking

communication. For example, for Encrypted_IRecv, our

implementation performs decryption inside MPI_Wait to

ensure the non-blocking property.

V. EXPERIMENTS

We empirically evaluated the performance of our encrypted

MPI libraries to (i) understand the encryption overheads in

MPI settings, and (ii) determine the best cryptographic library

to use with MPI. Below, we will first describe the system of

our experiments, the benchmarks, and our methodology. Later,

in Section V-A and Section V-B, we will report the experiment

results on Ethernet and Infiniband respectively.

SYSTEM SETUP. The experiments were performed on a cluster

with the following configuration. The processors are Intel

Xeon E5-2620 v4 with the base frequency of 2.10 GHz.

Each node has 8 cores and 64GB DDR4 RAM and runs

CentOS 7.6. Each node is equipped with two types of network

interface cards: a 10 Gigabit Ethernet card (Intel 82599ES

SFI/SFP+) and a 40 Gigabit InfiniBand QDR one (Mellanox

MT25408A0-FCC-QI ConnectX). Allocated nodes were cho-

sen manually. For each experiment, the same node allocation

was repeated for all measurements. All ping-pong results use

two processes on different nodes.

We implemented our prototypes on top of MPICH-3.2.1 (for

Ethernet) and MVAPICH2-2.3 (for Infiniband). The baseline

and our encrypted MPI libraries were compiled with the

standard set of MPICH and MVAPICH compilation flags

and optimization level O2. In addition, we compiled all the

cryptographic libraries (OpenSSL 1.1.1, BoringSSL, CryptoPP

7.0, and Libsodium 1.0.16) separately using their default

settings and linked them with MPI libraries during the linking

phase of MPICH and MVAPICH.

BENCHMARKS. We consider the following suites of bench-

marks:

• Encryption-decryption: The encryption-decryption bench-

mark measures the encryption and decryption perfor-

mance. For each data size, it measures the time for

performing 500,000 times the simple encryption and then

decryption of the data using a single thread.

• Ping-pong: This benchmark measures the uni-directional

throughput when two processes communicate back and

forth repeatedly using blocking send and receive. We ran

several experiments, each corresponding to a particular

message size within the range from 1B to 2MB. In each

experiment measurement, the two processes send mes-

sages of the designated size back and forth 10,000 times

if the message size is less than 1MB, and 1,000 times

otherwise. For encrypted communication, each message

results in an additional 28-byte overhead, as we need to

send a 12-byte nonce and a 16-byte tag per ciphertext.

Those bytes are excluded in the throughput calculation.

• OSU micro-benchmark 5.4.4 [19]: We used the Multiple

Pair Bandwidth Test benchmark in OSU suite to mea-

sure aggregate uni-directional throughput when multiple

senders in one node communicate with their correspond-

ing receivers in another node, via non-blocking send

and receive. In each experiment measurement, the sender

iterates 100 times; in each iteration, it sends 64 messages

of the designated size to the receiver and wait for the

replies before moving to the next iteration. Again, we

excluded the 28-byte overhead per message in calculating

the throughput.

We also used OSU suite to measure performance of

collective communication routines. Each experiment mea-

surement consists of 100 iterations.

• NAS parallel benchmarks [7]: To measure performance

of (encrypted) MPI in applications, we used the BT, CG,

FT, IS, LU, MG, and SP in the NAS parallel benchmarks;

all experiments used Class C size.

BENCHMARK METHODOLOGY. For ping-pong, OSU bench-

marks, and NAS benchmarks, we first ran each experiment at

least 20 times, up to 100 times, until the standard deviation was

within 5% of the arithmetic mean. If after 100 measurements,

the standard deviation was still too big then we would keep

running the experiment until the 99% confidence interval

was within 5% of the mean. The variability for encryption

and decryption is much smaller. Hence, each result for the

encryption-decryption benchmark is obtained by running the

benchmark at least 5 times until the standard deviation was

within 5% of the arithmetic mean.

To evaluate the scalability of our implementation, we used

four different settings (e.g. 4 rank/4 node, 16 rank/4 node,

16 rank/8 node and 64 rank/8 node) for OSU and NAS

benchmarks.

WHAT WE REPORT. In our experiments, BoringSSL and

OpenSSL delivered very similar performance. This is not

surprising, since BoringSSL is a fork of OpenSSL. In addition,

the benchmarks yielded the same trends for both 128-bit

and 256-bit keys. We therefore only report the results of

BoringSSL (256-bit key), Libsodium, and CryptoPP (256-bit

key).

A. Ethernet Results

ENCRYPTION-DECRYPTION. Before we get into the details

of the communication benchmark results, it is instructive to

understand the performance of AES-GCM, since it helps us

to have a better understanding of the performance of the

encrypted MPI libraries. The average throughputs of AES-

GCM-256 with different data sizes are shown in Fig. 2. It

is clear that different encryption libraries have very different

encryption and decryption performance. There are two ways

to interpret the results here. First, one can view this as the

convergence of the ping-pong performance when the network

speed becomes much faster than encryption and descryption.

Also, since for AES-GCM, the encryption and decryption

speed is roughly the same, the reported performance here is

a half of the encryption throughput (that is also decryption

throughput). Thus we can predict that for most experiments,

among the three encrypted MPI libraries, BoringSSL is the

best, and then Libsodium, and finally CryptoPP.

PING-PONG. The ping-pong performance of the baseline and

the encrypted MPI libraries is shown in Table I for small

messages, and illustrated in Fig. 3 for medium and large

messages. For 1KB messages, BoringSSL appears to slightly

outperform the baseline, but recall that we are reporting the

mean values with 5% deviation, so this only means that

BoringSSL has very close performance to the baseline.

0

500

1000

1500

1B 16B 256B 1KB 4KB 16KB 64KB 256KB 1MB 2MB

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size

BoringSSL Libsodium CryptoPP

Fig. 2: Encryption-decryption throughput of AES-GCM-256,

compiled with the gcc 4.8.5.

0

200

400

600

800

1000

1200

1KB 4KB 16KB 64KB 256KB 1MB 2MB

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size

Unencrypted BoringSSL

Libsodium CryptoPP

Fig. 3: Average unidirectional ping-pong throughput with

256-bit encryption key on Ethernet, for medium and large

messages.

1B 16B 256B 1KB

Unencrypted 0.050 0.83 7.01 17.03

BoringSSL 0.045 0.78 6.62 17.05

Libsodium 0.046 0.79 6.62 17.02

CryptoPP 0.029 0.48 6.85 17.02

TABLE I: Average unidirectional ping-pong throughput

(MB/s) for small messages, with 256-bit encryption key

on Ethernet.

For large messages, say 2MB ones, encrypted MPI libraries

have poor performance compared to the baseline: even the

fastest BoringSSL yields 78.3% overhead, and CryptoPP’s

overhead is much worse, nearly 400%. These performance

results can be explained as follows.

0.00

0.50

1.00

1.50

2.00

2.50

1 pair 2 pairs 4 pairs 8 pairs

B
a

n
d

w
id

th
 (

M
B

/s
)

Unencrypted BoringSSL Libsodium CryptoPP

Fig. 4: OSU Multiple-Pair average throughput for 1B-

messages on Ethernet.

• The running time of an encrypted MPI library consists of

(i) the encryption-decryption cost, and (ii) the underlying

MPI communications, which roughly corresponds to the

baseline performance.

• For BoringSSL, on 2MB messages, the encryption-

decryption throughput of AES-GCM-256 (1381 MB/s)

is about 1.32 times that of the ping-pong throughput

of the baseline (1038 MB/s). Estimatedly, BoringSSL’s

ping-pong time would be roughly 1+1.32

1.32
≈ 1.76 times

slower than that of the baseline. This is consistent with

the reported 78.3% overhead above.

• For CryptoPP, on 2MB messages, the encryption-

decryption throughput of AES-GCM-256 (273 MB/s)

much worse, just around 26% of the ping-pong per-

formance of the baseline (1038 MB/s). One thus can

estimate that CryptoPP’s ping-pong time would be about
1+0.26

0.26
≈ 4.84 times slower than that of the baseline.

This is again consistent with the reported 400% overhead

above.

For small messages, encrypted MPI libraries often perform

reasonably well, since the encryption-decryption throughput of

AES-GCM-256 is quite higher than the ping-pong through-

put of the baseline. For example, for 256-byte messages,

the encryption-decryption throughput of Libsodium is 409.67

MB/s, much higher than the 7.01 MB/s baseline ping-pong

throughput. Consequently, Libsodium has just 5.89% overhead

for 256-byte messages.

OSU MULTIPLE-PAIR BANDWIDTH. The Multiple-Pair per-

formance of the baseline and the encrypted MPI libraries, for

1B, 16KB, and 2MB messages, is shown in Figures 4, 5, and 6,

respectively.

For medium and large messages, as the number of pairs

increases, the relative performance of the encrypted MPI

libraries becomes much better, because (i) the network band-

width remains the same, yet the computational power doubles,

and (ii) encryption/decryption can overlap with MPI commu-

nications. When there is just a single pair, even BoringSSL

cannot encrypt fast enough to keep up with the network speed.

However, when there are 8 pairs, even CryptoPP can reach

the baseline performance, for 16KB messages. These results

0

200

400

600

800

1000

1200

1400

1 pair 2 pairs 4 pairs 8 pairs

B
a

n
d

w
id

th
 (

M
B

/s
)

Unencrypted BoringSSL Libsodium CryptoPP

Fig. 5: OSU Multiple-Pair average throughput for 16KB-

messages on Ethernet.

0

200

400

600

800

1000

1200

1400

1 pair 2 pairs 4 pairs 8 pairs

B
a

n
d

w
id

th
 (

M
B

/s
)

Unencrypted BoringSSL Libsodium CryptoPP

Fig. 6: OSU Multiple-Pair average throughput for 2MB-

messages on Ethernet.

suggest that (1) the overhead for a single communication flow

may be significant, but (2) in modern multi-core machines,

when multiple flows happen concurrently, the performance of

encrypted MPI libraries may be on par with the baseline.

For small messages, the situation is different, because the

network bandwidth is not fully used. As shown in Fig. 4,

the baseline throughput keeps increasing as the number of

pairs increases. In contrast, in Figures 5 and 6, for medium

and large messages, the baseline throughput is saturated when

there are just two pairs of senders and receivers. Consequently,

even when there are 8 pairs, BoringSSL still incurs 61.67%

overhead, and CryptoPP is far worse, resulting in 506.25%

overhead.

COLLECTIVE COMMUNICATION. The average running time of

Encrypted_Bcast and Encrypted_Alltoall, for the

64-rank and 8-node setting, is shown in Tables II and III,

respectively.

1B 16KB 4MB

Unencrypted 31.15 231.75 9,594.75

BoringSSL 37.15 246.17 13,892.74

Libsodium 35.54 264.37 18,322.19

CryptoPP 54.97 278.65 29,301.96

TABLE II: Average timing of Encrypted_Bcast (µs),

with 256-bit encryption key on Ethernet.

1B 16KB 4MB

Unencrypted 159.13 6,562.82 1,966,299.47

BoringSSL 329.60 7,691.08 2,210,546.32

Libsodium 452.76 8,937.74 2,535,104.93

CryptoPP 1,221.98 9,462.90 3,297,402.93

TABLE III: Average timing of Encrypted_Alltoall

(µs), with 256-bit encryption key on Ethernet.

To understand the performance of Encrypted_Bcast,

recall that each encrypted broadcast consists of an ordi-

nary MPI_Bcast and an encryption/decryption per node.

Hence the encryption overhead of the three encrypted MPI

libraries, illustrated in Fig. 7, loosely mirrors their encryption-

decryption throughput of Fig. 2.

• For example, for large messages (say 2MB), the

encryption-decryption throughput of BoringSSL (1381

MB/s) is around 2.37 times that of Libsodium (583

MB/s). On the other hand, the encryption overhead in

Encrypted_Bcast of BoringSSL (44.8%) is 2.03

times smaller than that of Libsodium (90.96%), approx-

imating the ratio 2.37 above.

• As another example, for BoringSSL, the encryption-

decryption throughput for 2MB messages is about the

same as that for 16KB messages. Thus one would

expect the encryption cost for 4MB messages in

Encrypted_Bcast would be about 4MB
16KB

= 256 times

that for 16KB messages. Indeed, for 4MB messages, Bor-

ingSSL spends about 4,298 µs on encryption/decryption,

which is about 298 times its encryption/decryption time

for 16KB messages (14.42 µs).

The trend of Encrypted_Alltoall, illustrated in

Fig. 8, is similar.

• For example, for 16KB messages, the encryption-

decryption throughput of BoringSSL (1332 MB/s)

is about 2.35 times that of CryptoPP (568

MB/s). The encryption overhead of BoringSSL in

Encrypted_Alltoall (17.19%) is 2.57 times

smaller than that of CryptoPP (44.19%).

• As another example, for CryptoPP, the encryption-

decryption throughput for 2MB messages (273 MB/s) is

about a half of that for 16 KB messages (568 MB/s).

Thus one would expect the encryption cost for 4MB

messages in Encrypted_Alltoall would be about

1

4

16

64

256

1024

1B 16KB 4MB

O
ve

rh
e

a
d

 (
%

)

Message size

BoringSSL Libsodium CryptoPP

Fig. 7: Encryption overhead (256-bit key), drawn in log scale,

for Encrypted_Bcast on Ethernet.

1

4

16

64

256

1024

4096

1B 16KB 4MB

O
ve

rh
e

a
d

 (
%

)

Message size

BoringSSL Libsodium CryptoPP

Fig. 8: Encryption overhead (256-bit key), drawn in log scale,

for Encrypted_Alltoall on Ethernet.

4MB
16KB

· 2 = 512 times that for 16KB messages. Indeed,

for 4MB messages, CryptoPP spends about 1,331,103 µs

on encryption/decryption, which is about 459 times its en-

cryption/decryption time for 16KB messages (2900 µs).

NAS BENCHMARKS. To understand encryption overheads in

a more realistic setting, we evaluated the encrypted MPI

libraries under NAS parallel benchmarks. The results are

shown in Table IV. Overall, BoringSSL’s total running time is

99.81 seconds, whereas the baseline’s running time is 88.52

seconds, and thus BoringSSL’s overhead is 12.75%.2 Likewise,

Libsodium’s and CryptoPP’s overhead are 19.25% and 30.33%

respectively. These results again support our thesis that encryp-

tion overheads may not be prohibitive for realistic scenarios

where there are multiple concurrence communication flows.

B. Infiniband Results

ENCRYPTION-DECRYPTION. It turns out that the MVAPICH2-

2.3 compiler, even with the same O2 flag, results in higher

encryption-decryption performance than the gcc 4.8.5 com-

piler for some libraries. Fig. 9 shows the average encryption-

decryption throughput of AES-GCM-256 code compiled by

2Conventionally, one would compute BoringSSL’s overhead of each bench-
mark (BT, CG, FT, etc) and then report the average of them as BoringSSL’s
average overhead. However, as pointed out by several papers [20], [21],
averaging over ratios is meaningless. Following the recommendation of those
papers, here we instead derived BoringSSL’s overhead from its total timing
of all NAS benchmarks and that of the baseline.

CG FT MG LU BT SP IS

Unencrypted 7.01 12.04 2.55 18.04 22.83 21.99 4.06

BoringSSL 8.55 12.81 3.01 19.05 27.40 24.46 4.52

Libsodium 9.62 13.67 3.09 19.48 28.70 26.30 4.71

CryptoPP 11.67 15.53 3.33 23.13 29.52 27.37 4.83

TABLE IV: Average running time (seconds) of NAS parallel benchmarks, Class C, 64-rank and 8-node, on Ethernet.

0

500

1000

1500

1B 16B 256B 1KB 4KB 16KB 64KB 256KB 1MB 2MB

B
a

n
d

w
id

th
 (

M
B

/s
)

Message size

BoringSSL Libsodium CryptoPP

Fig. 9: Encryption-decryption throughput of AES-GCM-256,

compiled under MVAPICH2-2.3.

the MVAPICH compiler. In particular, the performance of

CryptoPP for message size greater than 64KB is dramatically

improved. It seems natural to predict that while CryptoPP is

still the last among the three encrypted MPI libraries, for large

messages, its performance will be close to that of Libsodium.

PING-PONG. The ping-pong performance of the baseline and

the encrypted MPI libraries is shown in Table V for small

messages, and illustrated in Fig. 10 for medium and large

messages.

Again, for large messages, the performance of the encrypted

MPI libraries is much lower than that of the baseline, but

the situation is much worse than the Ethernet setting. For

example, for 2MB messages, even BoringSSL results in a

215.2% overhead. With InfiniBand, the baseline ping-pong

throughput is significantly higher than that with Ethernet

while the encryption-decryption throughput remains the same:

the encryption-decryption throughput of AES-GCM-256 is

much lower than the ping-pong throughput of the baseline.

For example, for 2MB messages, the encryption-decryption

throughput of AES-GCM-256 in BoringSSL (1384 MB/s) is

just around 46% of the baseline ping-pong throughput (3023

MB/s), and thus estimatedly, BoringSSL’s ping-pong time

would be about 1+0.46

0.46
≈ 3.17 times slower than that of the

baseline. This is consistent with the reported 215.2% overhead

above.

0

500

1000

1500

2000

2500

3000

3500

1KB 4KB 16KB 64KB 256KB 1MB 2MB
B

a
n

d
w

id
th

 (
M

B
/s

)

Message size

Unencrypted BoringSSL

Libsodium CryptoPP

Fig. 10: Unidirectional ping-pong throughput with 256-bit

encryption key on Infiniband, for medium and large messages.

1B 16B 256B 1KB

Unencrypted 0.57 9.61 82.34 272.84

BoringSSL 0.22 4.02 45.51 142.23

Libsodium 0.27 4.86 50.66 133.06

CryptoPP 0.05 0.98 17.27 61.08

TABLE V: Average unidirectional ping-pong throughput

(MB/s) for small messages, with 256-bit encryption key

on Infiniband.

For small messages, the situation is somewhat better, but

even BoringSSL would yield poor performance. For example,

for 256-byte messages, BoringSSL has a 80.93% overhead.

OSU MULTIPLE-PAIR BANDWIDTH. The Multiple-Pair per-

formance of the baseline and the encrypted MPI libraries, for

1B, 16KB, and 2MB messages, is shown in Figures 11, 12,

and 13, respectively.

Like the Ethernet setting, for medium and large messages,

although the encryption overhead is substantial when there

is only one pair of communication, when the number of

pairs increases, the throughput of encrypted MPI libraries

is much closer to the baseline throughput. However, for

medium message size (say 16KB), even when there are eight

communication flows, BoringSSL only achieves 2561 MB/s,

0

1

2

3

4

5

6

7

1 pair 2 pairs 4 pairs 8 pairs

B
a

n
d

w
id

th
 (

M
B

/s
)

Unencrypted BoringSSL Libsodium CryptoPP

Fig. 11: OSU Multiple-Pair average throughput for 1B-

messages on Infiniband.

0

500

1000

1500

2000

2500

3000

3500

1 pair 2 pairs 4 pairs 8 pairs

B
a

n
d

w
id

th
 (

M
B

/s
)

Unencrypted BoringSSL Libsodium CryptoPP

Fig. 12: OSU Multiple-Pair average throughput for 16KB-

messages on Infiniband.

which is just 81.8% of the baseline throughput of 3128 MB/s.

This gap is due to the speed difference between Ethernet and

Infiniband.

For small messages, the trend is at first similar to that of the

Ethernet setting, but when the number of pairs increases from 4

pairs to 8 pairs, the baseline throughput is throttled, probably

due to network contention. This decrease also happens for

medium and large messages, but not as conspicuously as the

case of small messages. Due to the plummeting of the baseline

throughput, for 8 pairs and one-byte messages, BoringSSL’s

overhead is just 29.91%, whereas for 4 pairs, its overhead is

308.33%.

COLLECTIVE COMMUNICATION. The average running time

of Encrypted_Bcast and Encrypted_Alltoall

for the 64-rank and 8-node setting, is shown in

Tables VI and VII respectively. The trend, as illustrated

in Fig. 14 for Encrypted_Bcast and Fig. 15 for

Encrypted_Alltoall, is similar to that of the Ethernet

setting, but the overhead is much worse, because Infiniband

latency is lower.

0

500

1000

1500

2000

2500

3000

3500

4000

1 pair 2 pairs 4 pairs 8 pairs

B
a

n
d

w
id

th
 (

M
B

/s
)

Unencrypted BoringSSL Libsodium CryptoPP

Fig. 13: OSU Multiple-Pair average throughput for 2MB-

messages on Infiniband.

1

4

16

64

256

1024

4096

16384

1B 16KB 4MB

O
ve

rh
e

a
d

 (
%

)

Message size

BoringSSL Libsodium CryptoPP

Fig. 14: Encryption overhead (256-bit key), drawn in log scale,

of Encrypted_Bcast on Infiniband.

1B 16KB 4MB

Unencrypted 4.14 28.58 3,780.27

BoringSSL 7.64 52.08 8,204.73

Libsodium 6.68 75.81 13,294.35

CryptoPP 25.25 85.43 23,344.63

TABLE VI: Average timing of Encrypted_Bcast (µs),

with 256-bit encryption key on Infiniband.

1B 16KB 4MB

Unencrypted 21.48 5,352.84 657,145.51

BoringSSL 435.70 6,789.17 1,013,896.50

Libsodium 736.29 7,977.41 1,305,389.60

CryptoPP 1,187.75 8,744.08 2,049,864.38

TABLE VII: Average timing of Encrypted_Alltoall

(µs), with 256-bit encryption key on Infiniband.

NAS BENCHMARKS. The results of NAS benchmarks for

Infiniband are shown in Table VIII. Here the overheads of

BoringSSL, Libsodium, and CryptoPP are 17.93%, 24.27%

and 29.41% respectively. CryptoPP’s overhead in Infiniband is

CG FT MG LU BT SP IS

Unencrypted 6.55 10.00 3.59 18.36 24.56 24.20 3.04

BoringSSL 8.36 10.77 4.20 19.73 33.35 26.87 3.20

Libsodium 9.87 11.52 4.28 20.04 34.62 28.55 3.33

CryptoPP 10.47 11.89 4.41 22.82 34.96 28.97 3.35

TABLE VIII: Average running time (seconds) of NAS parallel benchmarks, Class C, 64-rank and 8-node, on Infiniband.

1

4

16

64

256

1024

4096

16384

1B 16KB 4MB

O
ve

rh
e

a
d

 (
%

)

Message size

BoringSSL Libsodium CryptoPP

Fig. 15: Encryption overhead (256-bit key), drawn in log scale,

of Encrypted_Alltoall on Infiniband.

slightly less than that in Ethernet, because the compiler in the

former setting uses more aggressive optimizations than its Eth-

ernet counterpart, which drastically improves the performance

of CryptoPP, as shown in Figures 2 and 9. These results again

reiterate our thesis that even in very fast networks, encryption

overheads may not be prohibitive for practical scenarios.

C. Discussion

As shown in the experiments, in several settings, there is

a large gap between the performance of the encrypted MPI

libraries and the baseline. This happens because as shown

in Figures 2 and 9, the single-thread encryption speed is

not fast enough to support the high-speed network in data

centers, which have reached 100Gbps. This problem will likely

be worse in the future since it is expected that the network

bandwidth will continue increasing while the CPU single-

thread performance will not have significant improvement.

To fully utilize the network links whose throughput is sig-

nificantly higher than the single thread encryption-decryption

throughput, one will almost have no choice but to parallelize

encryption using multiple threads, or accelerate it via GPU.

VI. CONCLUSION

We considered adding encryption to MPI communica-

tions for providing privacy and integrity. Four widely used

cryptographic libraries, OpenSSL, BoringSSL, CryptoPP, and

Libsodium, were studied in this paper. We found that the

encryption overhead differs drastically across libraries, and

that BoringSSL (and OpenSSL) achieves the best performance

in most settings. Moreover, when individual communication is

considered, encryption overhead can be quite large. However,

in practical scenarios when multiple communication flows are

carried out concurrently, the overhead is not significant. In

particular, our evaluation with the NAS parallel benchmarks

shows that using the best cryptographic library BoringSSL, our

implementation on average only introduces 12.75% overhead

on Ethernet and 17.93% overhead on Infiniband.

ACKNOWLEDGMENT

We thank Sriram Keelveedhi for helpful discussions, the

anonymous reviewers of IEEE Cluster 2019 for insightful

feedback, and Prof. Weikuan Yu at Florida State University

for providing the computing infrastructure for software devel-

opment and performance measurement.

REFERENCES

[1] X. Ruan, Q. Yang, M. I. Alghamdi, S. Yin, and X. Qin. ES-MPICH2:
A Message Passing Interface with enhanced security. IEEE Trans.
Dependable Secur. Comput., 9(3):361374, May 2012.

[2] J. Katz and Y. Lindell. Introduction to modern cryptography. CRC press,
2014.

[3] OpenSSL: The open source toolkit for SSL/TLS. http://www.openssl.
org, 2018.

[4] BoringSSL. https://boringssl.googlesource.com/boringssl, 2018.
[5] The Sodium cryptography library (Libsodium). https://libsodium.

gitbook.io/doc, 2018.

[6] W. Dai. CryptoPP. https://www.cryptopp.com, 2018.
[7] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,

R. Fatoohi, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V.
Venkatakrishnan, and S. Weeratunga. The NAS Parallel Benchmarks.
Int. J. High Perform. Comput. Appl., 5(3):6373, Sept. 1991.

[8] M. J. Dworkin. NIST SP 800-38D. Recommendation for block cipher
modes of operation: Galois/Counter Mode (GCM) and GMAC. 2007.

[9] B. Balamurugan, P. V. Krishna, G. V. Rajya Lakshmi, and N. S.Kumar.
Cloud cluster communication for critical applications accessing C-
MPICH. In 2014 International Conference on Embedded Systems (ICES
2014), pages 145150, July 2014.

[10] M. A. Maffina and R. S. RamPriya. An improved and efficient message
passing interface for secure communication on distributed clusters.
In 2013 International Conference on Recent Trends in Information
Technology (ICRTIT 2013), pages 329334, July 2013.

[11] V. Rekhate, A. Tale, N. Sambhus, and A. Joshi. Secure and efficient
message passing in distributed systems using one-time pad. In 2016
International Conference on Computing, Analytics and Security Trends
(CAST 2016), pages 393397, Dec 2016.

[12] S. Shivaramakrishnan and S. D. Babar. Rolling curve ECC for cen-
tralized key management system used in ECC-MPICH2. In 2014
IEEE Global Conference on Wireless Computing Networking (GCWCN
2014), pages 169173, Dec 2014.

[13] J. Mason, K. Watkins, J. Eisner, and A. Stubblefield. A natural language
approach to automated cryptanalysis of two-time pads. In Proceedings
of the 13th ACM conference on Computer and communications security
(CCS 2006), pages 235244. ACM, 2006.

[14] J. H. An and M. Bellare. Does encryption with redundancy provide
authenticity? In International Conference on the Theory and Applica-
tions of Cryptographic Techniques (EUROCRYPT 2001), pages 512528.
Springer, 2001.

[15] D. A. McGrew and J. Viega. The security and performance of the
Galois/Counter Mode (GCM) of operation. In International Conference
on Cryptology in India (INDOCRYPT 2004), pages 343355. Springer,
2004.

[16] M. J. Dworkin. NIST SP 800-38A. Recommendation for block cipher
modes of operation: Methods and techniques. 2001.

[17] T. Krovetz and P. Rogaway. The software performance of authenti-
catedencryption modes. In International Workshop on Fast Software
Encryption (FSE 2011), pages 306327. Springer, 2011.

[18] The Heartbleed Bug. http://heartbleed.com/.

[19] OSU Benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/.
[20] P. J. Fleming and J. J. Wallace. How not to lie with statistics: the correct

way to summarize benchmark results. Communications of the ACM,
29(3):218221, 1986.

[21] T. Hoefler and R. Belli. Scientific benchmarking of parallel computing
systems: twelve ways to tell the masses when reporting performance
results. In Proceedings of the international conference for high perfor-
mance computing, networking, storage and analysis (SC 2015), page 73.
ACM, 2015.

