
Cost-Efficient Implementation of k-NN Algorithm

on Multi-Core Processors

Armin Ahmadzadeh, Reza Mirzaei, Hatef Madani, Mohammad Shobeiri, Mahsa Sadeghi,

Mohsen Gavahi, Kianoush Jafari, Mohsen Mahmoudi Aznaveh, Saeid Gorgin*

School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

HPC@ipm.ir

Abstract—k-nearest neighbor’s algorithm plays a significant

role in the processing time of many applications in a variety of

fields such as pattern recognition, data mining and machine

learning. In this paper, we present an accurate parallel method for

implementing k-NN algorithm in multi-core platforms. Based on

the problem definition we used Mahalanobis distance and

developed mathematic techniques and deployed best

programming experiences to accelerate contest reference

implementation. Our method makes exhaustive use of CPU and

minimizes memory access. This method is the winner of cost-

adjust-performance of MEMOCODE contest design 2014 and is

616x faster than the reference implementation of the contest.

Keywords— k-NN algorithm; Mahalanobis distance; Cost-

efficent; Multi-core processors

I. INTRODUCTION

K-nearest neighbors (k-NN) algorithm is one of the most
popular algorithms used for pattern recognition, data mining,
and machine learning applications [1, 2]. The subject of
MEMOCODE 2014 Design Contest is to find k-NN using
Mahalanobis distance [3]. The Mahalanobis distance depends on
the distribution of points in a feature space. This distance can be
defined as a dissimilarity measure between two random vectors
�⃗� and �⃗� of the same distribution with the covariance matrix 𝑆.
The calculated distance is based on the following equation where
�⃗� and �⃗� are 𝐷 dimension input vectors and 𝑆−1 is 𝐷 × 𝐷
dimension inverse covariance matrix.

 𝑑𝑖𝑠𝑡(�⃗�, �⃗�) = √(�⃗� − �⃗�)𝑇𝑆−1(�⃗� − �⃗�) (1)

In this contest 𝑆−1 is a 32 × 32 matrix and the objective is

finding 10 nearest neighbors (𝐾 = 10). The dimension of all the

vectors (input data 𝑁 and dataset 𝐶) in this problem is 32.

Independent data computations in this problem make it a

good candidate for multi and many core platforms. Generally,

two methods can be used to parallelize this algorithm in a coarse

grained processor: 1) one input element of data is given to all

threads and dataset is divided among these threads, 2) input of

each thread differs and each thread searches all the dataset for

their input. The former may introduce several performance

barriers. Merging different results of different cores is a

sequential task which reduces performance. Moreover, CPU

cache is not well utilized in this approach and extra memory

bandwidth is required. Therefore, we used the latter and

distributed input among cores and computed their distances to

each point of dataset in each stage of the algorithm. In addition,

we used several optimization techniques such as mathematic

optimization, data type optimization, and data path optimization.
The rest of this paper is organized as follows: in Section II

the previous works on designed implementation of k-NN
algorithm are reviewed. We present our proposed methods in
Section III, which is the winner of this year’s performance per
cost design contest. The experimental results are presented in
Section IV. Section V is the conclusion of this paper.

II. RELATED WORKS

There are different approaches for k-NN algorithm, and the
simplest one is discussed in [4]. This approach, named linear
search, explores all neighbors and computes distances to find
nearest points. Obviously, searching a large dataset consumes a
huge amount of computing power. Therefore, many
approximation algorithms are introduced in order to decrease the
computation time and complexity [4]. One of the algorithms for
this problem is space partitioning. K-D-B tree [5] and quad tree
[6] are data structures for space partitioning. This algorithm
partitions the feature space into several regions and each region
includes a subset of dataset points. To find K nearest neighbors,
it is sufficient to search the regions with maximum possibility of
neighbor’s existence. Labeling the dataset points into different
regions eliminates the necessity of searching the whole dataset,
which reduces the computation. Selection of region boundaries
only based on space is sensitive to data distribution, thus it may
cause unbalanced regions. As a result, to find a specific point,
we may have to search the whole dataset. In this case, space
partitioning has the overhead of labeling and reduces the
performance. Moreover, in case of high dimensional data space,
K-D-B tree may not be appropriate [7], [8], [9].

Partitioning schemes based on data distribution has been
devised to avoid unbalanced partitioning. K-means clustering
[10] is an example of data partitioning that clusters data set into
𝐾 sets. In this method, 𝐾 reference points are selected to
partition the dataset into 𝐾 clusters. Data points are within a
cluster with nearest reference point. In each cluster, reference
points are changed based on the average of the points, iteratively.
These iterations are repeated till reference point converge. This
approach is appropriate for Euclidean space and can improve
performance. R-tree is a data structure for this type of algorithms
[4, 11]. However, Ref. [4] argues that for high-dimensional
spaces, these kind of data structure degrade performance.
Therefore, we used linear search along with best programming
experiences to improve the performance of reference
implementation.

* S. Gorgin is also affiliated with Iranian Research Organization for Science
and Technology (IROST), Tehran, Iran.

http://en.wikipedia.org/wiki/Random_vector
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Covariance_matrix

III. PROPOSED METHODS

In this section, we present our techniques that reduce the
running time of the Mahalanobis algorithm. Profiling reference
implementation shows computing Mahalanobis distance is the
bottleneck of the algorithm. This distance is computed by three
matrix multiplications in equation (1). Matrix multiplication
needs a huge amount of computation and memory access. These
computations include two nested loops and the complexity
is 𝑂(𝑛2). One of the challenges in this problem is memory
access that can be relieved by optimizing memory usage.

In addition, very tight constraint on accuracy does not allow
approximation and randomized algorithms. This is due to
problem definition that only 2-bit error is allowed in the final
results. Therefore, we are limited to certain optimization
techniques, which are discussed in the following sections.

A. Mathematic Optimization

We implemented two different schemes to reduce the
computation of the algorithm. In one scheme, we mapped the
Mahalanobis space to Euclidean space. We need less
computation in Euclidean space. This scheme is introduced in
this section, part 1. The approach that we actually used is
reformulating Mahalanobis distance to decrease the
computation. This method helped us to pre-compute a part of
formula and avoid re-computation. This approach is presented
in this section part 2, 3.

1) Mapping Mahalanobis space to Euclidean space

It is possible to map Mahalanobis space to Euclidean space.
This scheme can reduce computation. The mathematical
foundation is presented in this part. Comparing square of
distances is sufficient for implementing the program, which is
also done in naïve approach. This formula is:

 𝑑𝑖𝑠𝑡𝑀
2 (�⃗�, �⃗�) = (�⃗� − �⃗�)𝑇𝑆−1(�⃗� − �⃗�) (2)

In the above equation 𝑆−1 is covariance matrix which is
defined as follow:

 𝑆𝑖𝑗 = 𝑐𝑜𝑣(𝑋𝑖 , 𝑋𝑗) = 𝐸[(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)]

Where
 𝜇𝑖 = 𝐸(𝑋𝑖)

The 𝑆 matrix is the expected value of 𝑖𝑡ℎ entry in the
vector 𝑋:

𝑆 = [

𝐸[(𝑋1 − 𝜇1)(𝑋1 − 𝜇1)] … 𝐸[(𝑋1 − 𝜇1)(𝑋𝑛 − 𝜇𝑛)]

𝐸[(𝑋2 − 𝜇2)(𝑋1 − 𝜇1)] … 𝐸[(𝑋2 − 𝜇2)(𝑋𝑛 − 𝜇𝑛)]
⋮ ⋱ ⋮

𝐸[(𝑋𝑛 − 𝜇𝑛)(𝑋1 − 𝜇1)] … 𝐸[(𝑋𝑛 − 𝜇𝑛)(𝑋𝑛 − 𝜇𝑛)]

]

The 𝑆 matrix is a symmetric matrix. It is also a positive semi-
definite matrix which can be mathematically explained as
follows:
𝑀 is a positive-semidefinite if 𝑥∗𝑀𝑥 ≥ 0 for all 𝑥 in ℂ𝑛(or,

all 𝑥 in ℝ𝑛 for the real matrix).
All positive semi-definite matrices can be decomposed using

eigenvalues:
𝑀 = 𝑉𝑃𝑉−1

Where 𝑃 is a diagonal matrix in which the diagonal entries are
eigenvalues of 𝑀. 𝑉 is one of corresponding eigenvectors of 𝑀.
Evidently, the matrix 𝑃 always has an inverse:

𝑃 = [

𝑑1 0 … 0
0 𝑑2 … 0
 ⋮ ⋮ ⋱ ⋮
0 0 … 𝑑𝑛

] , 𝑃−1 =

[

1

𝑑1
0 … 0

0
1

𝑑2
… 0

 ⋮ ⋮ ⋱ ⋮

0 0 …
1

𝑑𝑛]

Semi-definite matrix’ eigenvectors have a unique

characteristic that are equal to their transpose:

𝑉𝑇 = 𝑉−1

Now we can rewrite the Mahalanobis distance equation as
follows:

𝑑𝑖𝑠𝑡𝑀
2 (�⃗�, �⃗�) = (�⃗� − �⃗�)𝑇(𝑉𝑃𝑉𝑇)−1(�⃗� − �⃗�)

= (�⃗� − �⃗�)𝑇𝑉𝑃−1𝑉𝑇(�⃗� − �⃗�)
= (�⃗� − �⃗�)𝑇𝑉𝑃−1𝑉𝑇(�⃗� − �⃗�)
= (�⃗� − �⃗�)𝑇𝑉𝑃−1 2⁄ 𝑃−1 2⁄ 𝑉𝑇(�⃗� − �⃗�) (3)

Comparing (2) and (3), we can discover that matrix 𝑆−1 have
a square root matrix, 𝑆−1 2⁄ , hence

𝑑𝑖𝑠𝑡𝑀
2 (�⃗�, �⃗�) = (�⃗� − �⃗�)𝑇𝑆−1 2⁄ 𝑆−1 2⁄ (�⃗� − �⃗�)

𝑆−1 2⁄ =(𝑆−1 2⁄)
𝑇

⇒ (�⃗� − �⃗�)𝑇(𝑆−1 2⁄)
𝑇
𝑆−1 2⁄ (�⃗� − �⃗�)

(𝐴𝐵)𝑇=𝐵𝑇𝐴𝑇

⇒ [𝑆−1 2⁄ (�⃗� − �⃗�)]
𝑇
[𝑆−1 2⁄ (�⃗� − �⃗�)] (4)

The matrix [𝑆−1 2⁄ (�⃗� − �⃗�)] is actually a vector and (4) is the

exact format of computing distances in Euclidean space.
Computing dot product of two vectors needs less computing
power than matrix computation and the complexity of bottleneck
of the algorithm is reduced to O(n).

We have implemented the algorithm using the above
computation. Due to imprecise floating point operation,
unfortunately this approach is not fruitful; both the performance
decreases and the final result is not accurate.

2) Mahalanobis distance reformulating

We could find techniques that manipulate formulas in order
to improve performance. Let �⃗� be the input and �⃗� the dataset.
We can reformulate the Mahalanobis distance formula as:

𝑑𝑖𝑠𝑡𝑀
2 (�⃗�, �⃗�) = (�⃗� − �⃗�)𝑇𝑆−1(�⃗� − �⃗�)

(𝐴±𝐵)𝑇=𝐴𝑇±𝐵𝑇

⇒ (�⃗�𝑇 − �⃗�𝑇)𝑆−1(�⃗� − �⃗�)
= (�⃗�𝑇𝑆−1 − �⃗�𝑇𝑆−1)(�⃗� − �⃗�)
= �⃗�𝑇𝑆−1�⃗� − �⃗�𝑇𝑆−1�⃗� − �⃗�𝑇𝑆−1�⃗� + �⃗�𝑇𝑆−1�⃗�

�⃗�𝑇𝑆−1�⃗� is a scalar value. �⃗�𝑇 is 1 × 𝐷 matrix, 𝑆−1 is a 𝐷 × 𝐷
matrix, �⃗� is 𝐷 × 1 matrix. �⃗�𝑇𝑆−1�⃗� and �⃗�𝑇𝑆−1�⃗� are scalars and
they are equal, �⃗�𝑇𝑆−1�⃗� = �⃗�𝑇𝑆−1�⃗�. The equality can be easily
seen by expanding matrices. So, the Mahalanobis distance can
be rewritten as:

𝑑𝑖𝑠𝑡𝑀
2 (�⃗�, �⃗�) = �⃗�𝑇𝑆−1�⃗� − 2�⃗�𝑇𝑆−1�⃗� + �⃗�𝑇𝑆−1�⃗�

�⃗�𝑇𝑆−1�⃗� is also a scalar. This scalar can be pre-computed. This
method reduces 𝐷 dimensional computation to just a scalar pre-
computation and decreases memory access about 32 times.
 �⃗�𝑇𝑆−1�⃗� is executed 𝑁 times and is not a large portion of the
computations. The 𝑆−1�⃗� part of �⃗�𝑇𝑆−1�⃗� can also be pre-
computed and �⃗�𝑇𝑆−1�⃗� is executed |𝐶| times for each input. This
part is the bottleneck of the algorithm and consumes most of the

computing power. As a short summery of this part, we shifted a
great time of computation to pre-compute time, reduced one
multiplication and decreased 𝑁 × |𝐶| times computation to just
N times (|𝐶| ≫ 𝑁).

3) Using mathematic optimization

𝑆−1 is a covariance matrix which is symmetric and needs less
storage. This feature can help us reduce memory access and the
computation also can be reduced, however the complexity of the
algorithm does not change. Consider the naïve implementation
of matrix multiplication:

 (𝑥𝑆−1)𝑖 = ∑ 𝑥𝑗𝑆𝑖𝑗
−1𝑛

𝑗=1 , 𝑖 = 1, . . . , 𝑛 (5)

The complexity of above equation is O(n2). While the entries
of a symmetric matrix are equal with respect to the main
diagonal, the (5) can be rewritten with two partial sums:

(𝑃1)𝑖 = 2 × ∑ 𝑥𝑗𝑆𝑖𝑗
−1𝑛

𝑗=𝑖+1 , 𝑖 = 1, . . . , 𝑛 (6)

(𝑃2)𝑖 = ∑ 𝑥𝑗𝑆𝑗𝑗
−1𝑛

𝑗=1 , 𝑖 = 1, . . . , 𝑛 (7)

(𝑥𝑆−1)𝑖 = (𝑃1)𝑖 + (𝑃2)𝑖 (8)

Equation (8) equals to the result of (5) which is sum of partial
additions of (6) and (7). Equation (7) is applied to diagonal
entries and (6) can be applied to either upper triangular or lower
triangular, while 𝑆−1 is symmetric. Time complexity of these
equations is roughly 𝑂(𝑛2 2⁄), thus the computation is virtually
reduced by half.

B. Data Type Optimization

In the reference implementation, input data and dataset
variables are 64 bits wide, however based on problem definition
input variables need just 12 bits. This memory assignment is not
appropriate and consumes extra memory bandwidth, and
reduces performance.

There are three main stages in our algorithm, in which data
types need different sizes. Using proper data size in each stage
let the compiler use proper SIMD feature of the platform. The
first stage is a simple subtraction that does not change the size
of the partial result. While general purpose processors have
certain data types (such as short int, int or long int), we store
variables of first stage in 16 bits. In second stage, the result of
previous stage is multiplied by covariance matrix (𝑆−1). Result
of this multiplication makes a vector that contains 32 elements.
Each element of this vector is produced by multiplication of two
12 bits value, a 24 bits value. This operation is repeated for each
element, and then the results of these operations are
accumulated. While each vector contains 32 elements and each
element is 24 bits, addition of all elements need 24 + log(32)
bits (29 bits). We have to store the result of this stage in a 32 bit
variable. In the last stage, the dot product of prior stage vector
and the difference vector is computed. There is a multiplication
of 29 bits by 12 bits vector which is a 41 bits vector. There are
32 additions of these 41 bits vector which results in a 46 bits
variable. Due to restraints of platform architecture, we store the
last value in a long integer data type, which consumes 64 bits.

The proper usage of data types that mentioned in last
paragraph reduces overall memory usage from 2.8 GB to 800
MB. Using this method allows us to implement the algorithm in
platforms that have less RAM, like GPUs and FPGAs. Reducing
memory usage by about one third leads not only to a better

memory access, but also to a better consumption of memory
bandwidth. Moreover, cache miss is reduced.

C. Data Path Optimization.

We have used a passing technique in order to avoid some
parts of computation. The 2�⃗�𝑇𝑆−1�⃗� is the part that we have to
calculate |𝐶| times for each input. To compute this part we need
a loop, with 𝐷 times iteration, for each element of dataset. We
observed that many elements of dataset are far from the intended
input and this can be understood after a few iterations in the loop.
Therefore, we compare the distance with the furthest among the
K nearest neighbors computed so far and bypass the remaining
part of the loop, if the current data element cannot be enlisted in
nearest neighbors. The pseudo code of this part is presented here:

Algorithm 1: data path optimization

1: 𝐷𝑖𝑠𝑡 ← 𝑥𝑇𝑆−1𝑥 + 𝑦𝑇𝑆−1𝑦 ;

2: 𝑑𝑖𝑠𝑡𝑡𝑒𝑚𝑝 ← 0; 𝑓 ← 0; 𝑚𝑎𝑥𝑡𝑟𝑦 ← 1;

3: FOR i =1 TO D STEP 4 DO

4: FOR k = 1 TO 4 DO

5: 𝑑𝑖𝑠𝑡𝑡𝑒𝑚𝑝 ← 𝑑𝑖𝑠𝑡𝑡𝑒𝑚𝑝 + (𝑥(𝑖+𝑘)
𝑇 × 𝑆−1 × 𝑦(𝑖+𝑘)) ;

6: END DO

7: IF ((𝐷𝑖𝑠𝑡 − 2 × 𝑑𝑖𝑠𝑡𝑡𝑒𝑚𝑝) > 𝑑𝑖𝑠𝑡𝑙𝑜𝑤𝑒𝑠𝑡[𝑘 − 1]) THEN

8: 𝑓 ← 𝑓 + 1;

9: IF (f > maxtry)

10: RETURN;

11: ELSE

12: 𝑓 ← 0;

13: END IF

14: END DO

15: 𝑑𝑖𝑠𝑡𝑛𝑒𝑤 = 𝐷𝑖𝑠𝑡 − 2 × 𝑑𝑖𝑠𝑡𝑡𝑒𝑚𝑝;

16: Sort (𝑑𝑖𝑠𝑡𝑛𝑒𝑤); // sort new distance between K nearest

17: RETURN;

We devised an approximation method to be pretty confident
that the current point will not be in nearest neighbors set. Note
that while there are both positive and negative numbers in the
addition of the algorithm, there may always be scenarios that the
result of addition changes in the last iteration. However, we
observed that prediction of outcome is admissible.

The method that we use is obtained from the branch
prediction technique commonly used in modern processors.
After each 4 iterations of the loop, we compare the results with
nearest neighbors list (line 7 in algorithm 1). If the result is
greater than the greatest element in the set of K nearest
neighbors, then we change the state of our current situation. The
overall diagram of this action can be seen in the Fig. 1.

Initial

state

Medium

state

Drop

state

1

2

3

4

Fig. 1 FSM of prediction method

1, 3: 𝐷𝑖𝑠𝑡 + (2 × 𝑑𝑖𝑠𝑡𝑡𝑒𝑚𝑝) < 𝑑𝑖𝑠𝑡𝑙𝑜𝑤𝑒𝑠𝑡[𝑘 − 1]

2, 4: 𝐷𝑖𝑠𝑡 + (2 × 𝑑𝑖𝑠𝑡𝑡𝑒𝑚𝑝) > 𝑑𝑖𝑠𝑡𝑙𝑜𝑤𝑒𝑠𝑡[𝑘 − 1]

We bypass the rest of the loop if the program enters in the
drop state (line 10 in algorithm 1). We observed many of dataset
points need just 8 iterations and the remaining 24 iteration can
be bypassed.

IV. EXPERIMENTAL RESULT

MEMOCODE hardware/software co-design contest is in
two classes: absolute-performance and cost-adjusted-
performance. We implemented our algorithm on multi-core
systems. Here is a list of our multi-core platforms:

 Intel Core i5, 2410M with two cores @ 2.30GHz.

 Intel Core i7, 960 with four cores @ 2.67GHz.

 Intel Xeon x5650 with six core @ 2.67GHz.

 Intel Xeon E5-2650 with eight core @ 2.00GHZ.

 Intel Xeon Phi 5110P with sixty core @ 1.053 GHz

We took advantage of multi-core platforms via OpenMP
programming. To gain better efficiency, we used Intel compiler
and OpenMP4.0. For the performance evaluation, we
implemented our approach in various multi core platforms. Even
though error in two LSBs was acceptable, our program was
executed without any error in the reported results.

We tested our implementation on five multi-core platforms.
The platforms, prices, and execution time on each platform for
the large input dataset (input data 𝑁 = 1,000 and dataset 𝐶 =
10,000,000) are shown in Table 1.

TABLE I. PRICES, AND EXECUTION TIME FOR EACH PLATFORM

Design
Intel

Platform
Time (S)

Cost

(US$)

Performance

× Cost

Speed

Up

Naive Xeon 2650 9240 1016 9387748 1 X

Proposed

Solution

corei5 166 35.99 5975 56 X
corei7 71 100 7100 130 X

Xeon 5650 35 160 5600 264 X

Xeon 2650 15 1016 15240 616 X

Xeon Phi

5110P
54 729 39366 171 X

Based on the presented results in the above table, the best
platform in terms of performance per cost is Intel Xeon 5650;
the best speed up of these platforms is 616X. Summary of all the
result are presented in Fig. 2.

Fig. 2 Time, price and performance/cost amount for various multi-core
processors

V. CONCLUSION

In this paper, we presented a CPU implementation of k-
nearest neighbor algorithm based on the Mahalanobis distance.
Our CPU implementation is 616 times faster than the naïve
approach of the contest. Our implementation deploys memory
reduction and decreases bandwidth requirements of k-NN with
Mahalanobis distance. We also manipulate some parts of
algorithm to bypass inessential computations and accelerate
overall execution process. Although two bits deviation error is
allowed in the definition of the contest problem, our approach is
100% accurate. Our implementation is the winner of cost-
adjusted-performance of MEMOCODE 2014 Design Contest.

ACKNOWLEDGMENT

We are grateful to Prof. Hamid Sarbazi Azad, Head of the
school of computer science, for his support and useful guidance.
We also would like to acknowledge all members of computer
science school at the Institute for Research in Fundamental
Sciences (IPM) for their helpful discussions and comments.

REFERENCES

[1] R. Chatpatanasiri, T. Korsrilabutr, P. Tangchanachaianan,

and B. Kijsirikul, "A new kernelization framework for

Mahalanobis distance learning algorithms,"

Neurocomputing, vol. 73, pp. 1570-1579, 2010.

[2] K. Q. Weinberger, J. Blitzer, and L. K. Saul, "Distance metric

learning for large margin nearest neighbor classification," in

Advances in neural information processing systems, 2005,

pp. 1473-1480.

[3] MEMOCODE 2014 Design Contest. Available:

http://memocode.irisa.fr/2014/

[4] R. Weber, H.-J. Schek, and S. Blott, "A quantitative analysis

and performance study for similarity-search methods in high-

dimensional spaces," in VLDB, 1998, pp. 194-205.

[5] J. T. Robinson, "The KDB-tree: a search structure for large

multidimensional dynamic indexes," in Proceedings of the

1981 ACM SIGMOD international conference on

Management of data, 1981, pp. 10-18.

[6] R. A. Finkel and J. L. Bentley, "Quad trees a data structure

for retrieval on composite keys," Acta informatica, vol. 4, pp.

1-9, 1974.

[7] H. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang,

"iDistance: An adaptive B+-tree based indexing method for

nearest neighbor search," ACM Transactions on Database

Systems (TODS), vol. 30, pp. 364-397, 2005.

[8] C. Yu, B. C. Ooi, K.-L. Tan, and H. Jagadish, "Indexing the

distance: An efficient method to knn processing," in VLDB,

2001, pp. 421-430.

[9] J. E. Goodman and J. O'Rourke, Handbook of discrete and

computational geometry: CRC press, 2010.

[10] J. MacQueen, "Some methods for classification and analysis

of multivariate observations," in Proceedings of the Fifth

Berkeley Symposium on Mathematical Statistics and

Probability, Volume 1: Statistics, Berkeley, Calif., 1967, pp.

281-297.

[11] A. Guttman, R-trees: a dynamic index structure for spatial

searching vol. 14: ACM, 1984.

15 35 54 71
166

0.00000

0.00005

0.00010

0.00015

0.00020

0

200

400

600

800

1000

1200

Xeon

2650

Xeon

5650
Xeon Phi

–5110P

corei7 corei5

P
er

fo
rm

an
ce

 /
 C

o
st

T
im

e
an

d
 C

o
st

Time (S) Cost (US$) Performance / Cost

