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Abstract—k-nearest neighbor’s algorithm plays a significant 

role in the processing time of many applications in a variety of 

fields such as pattern recognition, data mining and machine 

learning. In this paper, we present an accurate parallel method for 

implementing k-NN algorithm in multi-core platforms. Based on 

the problem definition we used Mahalanobis distance and 

developed mathematic techniques and deployed best 

programming experiences to accelerate contest reference 

implementation. Our method makes exhaustive use of CPU and 

minimizes memory access. This method is the winner of cost-

adjust-performance of MEMOCODE contest design 2014 and is 

616x faster than the reference implementation of the contest. 

Keywords— k-NN algorithm; Mahalanobis distance; Cost-

efficent; Multi-core processors 

I.  INTRODUCTION 

K-nearest neighbors (k-NN) algorithm is one of the most 
popular algorithms used for pattern recognition, data mining, 
and machine learning applications [1, 2]. The subject of 
MEMOCODE 2014 Design Contest is to find k-NN using 
Mahalanobis distance [3]. The Mahalanobis distance depends on 
the distribution of points in a feature space. This distance can be 
defined as a dissimilarity measure between two random vectors 
𝑥⃗ and 𝑦⃗ of the same distribution with the covariance matrix 𝑆. 
The calculated distance is based on the following equation where 
𝑥⃗ and 𝑦⃗ are 𝐷 dimension input vectors and 𝑆−1 is 𝐷 × 𝐷 
dimension inverse covariance matrix. 

 𝑑𝑖𝑠𝑡(𝑥⃗, 𝑦⃗) = √(𝑥⃗ − 𝑦⃗)𝑇𝑆−1(𝑥⃗ − 𝑦⃗)  (1) 

In this contest 𝑆−1 is a 32 × 32 matrix and the objective is 

finding 10 nearest neighbors (𝐾 = 10). The dimension of all the 

vectors (input data 𝑁 and dataset 𝐶) in this problem is 32. 

Independent data computations in this problem make it a 

good candidate for multi and many core platforms. Generally, 

two methods can be used to parallelize this algorithm in a coarse 

grained processor: 1) one input element of data is given to all 

threads and dataset is divided among these threads, 2) input of 

each thread differs and each thread searches all the dataset for 

their input. The former may introduce several performance 

barriers. Merging different results of different cores is a 

sequential task which reduces performance. Moreover, CPU 

cache is not well utilized in this approach and extra memory 

bandwidth is required. Therefore, we used the latter and 

distributed input among cores and computed their distances to 

each point of dataset in each stage of the algorithm. In addition, 

we used several optimization techniques such as mathematic 

optimization, data type optimization, and data path optimization. 
The rest of this paper is organized as follows: in Section II 

the previous works on designed implementation of k-NN 
algorithm are reviewed. We present our proposed methods in 
Section III, which is the winner of this year’s performance per 
cost design contest. The experimental results are presented in 
Section IV. Section V is the conclusion of this paper. 

II. RELATED WORKS 

There are different approaches for k-NN algorithm, and the 
simplest one is discussed in [4]. This approach, named linear 
search, explores all neighbors and computes distances to find 
nearest points. Obviously, searching a large dataset consumes a 
huge amount of computing power. Therefore, many 
approximation algorithms are introduced in order to decrease the 
computation time and complexity [4]. One of the algorithms for 
this problem is space partitioning. K-D-B tree [5] and quad tree 
[6] are data structures for space partitioning. This algorithm 
partitions the feature space into several regions and each region 
includes a subset of dataset points. To find K nearest neighbors, 
it is sufficient to search the regions with maximum possibility of 
neighbor’s existence. Labeling the dataset points into different 
regions eliminates the necessity of searching the whole dataset, 
which reduces the computation. Selection of region boundaries 
only based on space is sensitive to data distribution, thus it may 
cause unbalanced regions. As a result, to find a specific point, 
we may have to search the whole dataset. In this case, space 
partitioning has the overhead of labeling and reduces the 
performance. Moreover, in case of high dimensional data space, 
K-D-B tree may not be appropriate [7], [8], [9]. 

Partitioning schemes based on data distribution has been 
devised to avoid unbalanced partitioning. K-means clustering 
[10] is an example of data partitioning that clusters data set into 
𝐾 sets. In this method, 𝐾 reference points are selected to 
partition the dataset into 𝐾 clusters. Data points are within a 
cluster with nearest reference point. In each cluster, reference 
points are changed based on the average of the points, iteratively. 
These iterations are repeated till reference point converge. This 
approach is appropriate for Euclidean space and can improve 
performance. R-tree is a data structure for this type of algorithms 
[4, 11]. However, Ref. [4] argues that for high-dimensional 
spaces, these kind of data structure degrade performance. 
Therefore, we used linear search along with best programming 
experiences to improve the performance of reference 
implementation. 
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III. PROPOSED METHODS 

In this section, we present our techniques that reduce the 
running time of the Mahalanobis algorithm. Profiling reference 
implementation shows computing Mahalanobis distance is the 
bottleneck of the algorithm. This distance is computed by three 
matrix multiplications in equation (1). Matrix multiplication 
needs a huge amount of computation and memory access. These 
computations include two nested loops and the complexity 
is 𝑂(𝑛2). One of the challenges in this problem is memory 
access that can be relieved by optimizing memory usage. 

 

In addition, very tight constraint on accuracy does not allow 
approximation and randomized algorithms. This is due to  
problem definition that only 2-bit error is allowed in the final 
results. Therefore, we are limited to certain optimization 
techniques, which are discussed in the following sections.  

A. Mathematic Optimization 

We implemented two different schemes to reduce the 
computation of the algorithm. In one scheme, we mapped the 
Mahalanobis space to Euclidean space. We need less 
computation in Euclidean space. This scheme is introduced in 
this section, part 1. The approach that we actually used is 
reformulating Mahalanobis distance to decrease the 
computation. This method helped us to pre-compute a part of 
formula and avoid re-computation. This approach is presented 
in this section part 2, 3. 

1) Mapping Mahalanobis space to Euclidean space  

It is possible to map Mahalanobis space to Euclidean space. 
This scheme can reduce computation. The mathematical 
foundation is presented in this part. Comparing square of 
distances is sufficient for implementing the program, which is 
also done in naïve approach. This formula is: 

 𝑑𝑖𝑠𝑡𝑀
2 (𝑥⃗, 𝑦⃗) =  (𝑥⃗ − 𝑦⃗)𝑇𝑆−1(𝑥⃗ − 𝑦⃗) (2) 

In the above equation 𝑆−1 is covariance matrix which is 
defined as follow: 

 𝑆𝑖𝑗 = 𝑐𝑜𝑣(𝑋𝑖 , 𝑋𝑗) = 𝐸[(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)]  

Where 
 𝜇𝑖 = 𝐸(𝑋𝑖)  

The 𝑆 matrix is the expected value of 𝑖𝑡ℎ entry in the 
vector 𝑋: 

𝑆 = [

𝐸[(𝑋1 − 𝜇1)(𝑋1 − 𝜇1)] … 𝐸[(𝑋1 − 𝜇1)(𝑋𝑛 − 𝜇𝑛)]

𝐸[(𝑋2 − 𝜇2)(𝑋1 − 𝜇1)] … 𝐸[(𝑋2 − 𝜇2)(𝑋𝑛 − 𝜇𝑛)]
⋮ ⋱ ⋮

𝐸[(𝑋𝑛 − 𝜇𝑛)(𝑋1 − 𝜇1)] … 𝐸[(𝑋𝑛 − 𝜇𝑛)(𝑋𝑛 − 𝜇𝑛)]

] 

The 𝑆 matrix is a symmetric matrix. It is also a positive semi-
definite matrix which can be mathematically explained as 
follows: 
𝑀 is a positive-semidefinite if 𝑥∗𝑀𝑥 ≥ 0 for all 𝑥 in ℂ𝑛(or, 

all 𝑥 in ℝ𝑛 for the real matrix). 
All positive semi-definite matrices can be decomposed using 

eigenvalues: 
𝑀 = 𝑉𝑃𝑉−1 

Where 𝑃 is a diagonal matrix in which the diagonal entries are 
eigenvalues of 𝑀. 𝑉 is one of corresponding eigenvectors of 𝑀. 
Evidently, the matrix 𝑃 always has an inverse: 

𝑃 = [

𝑑1 0 … 0
0 𝑑2 …  0
 ⋮ ⋮ ⋱ ⋮
0 0 … 𝑑𝑛

] , 𝑃−1 =

[
 
 
 
 
 
 
 
1

𝑑1
0 … 0

0
1

𝑑2
…  0

 ⋮ ⋮ ⋱ ⋮

0 0 …
1

𝑑𝑛]
 
 
 
 
 
 
 

 

Semi-definite matrix’ eigenvectors have a unique 

characteristic that are equal to their transpose: 
 

𝑉𝑇 = 𝑉−1 
 

Now we can rewrite the Mahalanobis distance equation as 
follows: 

𝑑𝑖𝑠𝑡𝑀
2 (𝑥⃗, 𝑦⃗) =  (𝑥⃗ − 𝑦⃗)𝑇(𝑉𝑃𝑉𝑇)−1(𝑥⃗ − 𝑦⃗)                       

=  (𝑥⃗ − 𝑦⃗)𝑇𝑉𝑃−1𝑉𝑇(𝑥⃗ − 𝑦⃗) 
=  (𝑥⃗ − 𝑦⃗)𝑇𝑉𝑃−1𝑉𝑇(𝑥⃗ − 𝑦⃗) 
= (𝑥⃗ − 𝑦⃗)𝑇𝑉𝑃−1 2⁄ 𝑃−1 2⁄ 𝑉𝑇(𝑥⃗ − 𝑦⃗) (3) 

Comparing (2) and (3), we can discover that matrix 𝑆−1 have 
a square root matrix, 𝑆−1 2⁄ , hence 

𝑑𝑖𝑠𝑡𝑀
2 (𝑥⃗, 𝑦⃗) = (𝑥⃗ − 𝑦⃗)𝑇𝑆−1 2⁄ 𝑆−1 2⁄ (𝑥⃗ − 𝑦⃗) 

𝑆−1 2⁄ =(𝑆−1 2⁄ )
𝑇

⇒           (𝑥⃗ − 𝑦⃗)𝑇(𝑆−1 2⁄ )
𝑇
𝑆−1 2⁄ (𝑥⃗ − 𝑦⃗) 

(𝐴𝐵)𝑇=𝐵𝑇𝐴𝑇

⇒         [𝑆−1 2⁄ (𝑥⃗ − 𝑦⃗)]
𝑇
[𝑆−1 2⁄ (𝑥⃗ − 𝑦⃗)] (4) 

The matrix [𝑆−1 2⁄ (𝑥⃗ − 𝑦⃗)] is actually a vector and (4) is the 

exact format of computing distances in Euclidean space. 
Computing dot product of two vectors needs less computing 
power than matrix computation and the complexity of bottleneck 
of the algorithm is reduced to O(n). 

We have implemented the algorithm using the above 
computation. Due to imprecise floating point operation, 
unfortunately this approach is not fruitful; both the performance 
decreases and the final result is not accurate. 

2) Mahalanobis distance reformulating 

We could find techniques that manipulate formulas in order 
to improve performance. Let 𝑥⃗ be the input and 𝑦⃗ the dataset. 
We can reformulate the Mahalanobis distance formula as: 

𝑑𝑖𝑠𝑡𝑀
2 (𝑥⃗, 𝑦⃗) =  (𝑥⃗ − 𝑦⃗)𝑇𝑆−1(𝑥⃗ − 𝑦⃗) 

(𝐴±𝐵)𝑇=𝐴𝑇±𝐵𝑇

⇒           (𝑥⃗𝑇 − 𝑦⃗𝑇)𝑆−1(𝑥⃗ − 𝑦⃗) 
= (𝑥⃗𝑇𝑆−1 − 𝑦⃗𝑇𝑆−1)(𝑥⃗ − 𝑦⃗) 
= 𝑥⃗𝑇𝑆−1𝑥⃗ − 𝑦⃗𝑇𝑆−1𝑥⃗ − 𝑥⃗𝑇𝑆−1𝑦⃗ + 𝑦⃗𝑇𝑆−1𝑦⃗ 

𝑥⃗𝑇𝑆−1𝑥⃗ is a scalar value. 𝑥⃗𝑇 is 1 × 𝐷 matrix, 𝑆−1 is a 𝐷 × 𝐷 
matrix, 𝑥⃗ is 𝐷 × 1 matrix. 𝑥⃗𝑇𝑆−1𝑦⃗ and 𝑦⃗𝑇𝑆−1𝑥⃗ are scalars and 
they are equal, 𝑥⃗𝑇𝑆−1𝑦⃗ = 𝑦⃗𝑇𝑆−1𝑥⃗. The equality can be easily 
seen by expanding matrices. So, the Mahalanobis distance can 
be rewritten as: 

𝑑𝑖𝑠𝑡𝑀
2 (𝑥⃗, 𝑦⃗) =  𝑥⃗𝑇𝑆−1𝑥⃗ − 2𝑥⃗𝑇𝑆−1𝑦⃗ + 𝑦⃗𝑇𝑆−1𝑦⃗ 

𝑦⃗𝑇𝑆−1𝑦⃗ is also a scalar. This scalar can be pre-computed. This 
method reduces 𝐷 dimensional computation to just a scalar pre-
computation and decreases memory access about 32 times. 
 𝑥⃗𝑇𝑆−1𝑥⃗ is executed 𝑁 times and is not a large portion of the 
computations. The 𝑆−1𝑦⃗ part of 𝑥⃗𝑇𝑆−1𝑦⃗ can also be pre-
computed and 𝑥⃗𝑇𝑆−1𝑦⃗ is executed |𝐶| times for each input. This 
part is the bottleneck of the algorithm and consumes most of the 



computing power. As a short summery of this part, we shifted a 
great time of computation to pre-compute time, reduced one 
multiplication and decreased 𝑁 × |𝐶| times computation to just 
N times (|𝐶| ≫ 𝑁). 

3) Using mathematic optimization 

𝑆−1 is a covariance matrix which is symmetric and needs less 
storage. This feature can help us reduce memory access and the 
computation also can be reduced, however the complexity of the 
algorithm does not change. Consider the naïve implementation 
of matrix multiplication:   

 (𝑥𝑆−1)𝑖 = ∑ 𝑥𝑗𝑆𝑖𝑗
−1𝑛

𝑗=1 , 𝑖 = 1, . . . , 𝑛 (5) 

The complexity of above equation is O(n2). While the entries 
of a symmetric matrix are equal with respect to the main 
diagonal, the (5) can be rewritten with two partial sums: 

(𝑃1)𝑖 =  2 × ∑ 𝑥𝑗𝑆𝑖𝑗
−1𝑛

𝑗=𝑖+1 , 𝑖 = 1, . . . , 𝑛 (6) 

(𝑃2)𝑖 = ∑ 𝑥𝑗𝑆𝑗𝑗
−1𝑛

𝑗=1 , 𝑖 = 1, . . . , 𝑛 (7) 

(𝑥𝑆−1)𝑖 =  (𝑃1)𝑖 + (𝑃2)𝑖  (8) 

Equation (8) equals to the result of (5) which is sum of partial 
additions of (6) and (7). Equation (7) is applied to diagonal 
entries and (6) can be applied to either upper triangular or lower 
triangular, while 𝑆−1 is symmetric. Time complexity of these 
equations is roughly 𝑂(𝑛2 2⁄ ), thus the computation is virtually 
reduced by half.  

B. Data Type Optimization 

In the reference implementation, input data and dataset 
variables are 64 bits wide, however based on problem definition 
input variables need just 12 bits. This memory assignment is not 
appropriate and consumes extra memory bandwidth, and 
reduces performance. 

There are three main stages in our algorithm, in which data 
types need different sizes. Using proper data size in each stage 
let the compiler use proper SIMD feature of the platform. The 
first stage is a simple subtraction that does not change the size 
of the partial result. While general purpose processors have 
certain data types (such as short int, int or long int), we store 
variables of first stage in 16 bits. In second stage, the result of 
previous stage is multiplied by covariance matrix (𝑆−1). Result 
of this multiplication makes a vector that contains 32 elements. 
Each element of this vector is produced by multiplication of two 
12 bits value, a 24 bits value. This operation is repeated for each 
element, and then the results of these operations are 
accumulated. While each vector contains 32 elements and each 
element is 24 bits, addition of all elements need 24 + log(32)  
bits (29 bits). We have to store the result of this stage in a 32 bit 
variable. In the last stage, the dot product of prior stage vector 
and the difference vector is computed. There is a multiplication 
of 29 bits by 12 bits vector which is a 41 bits vector. There are 
32 additions of these 41 bits vector which results in a 46 bits 
variable. Due to restraints of platform architecture, we store the 
last value in a long integer data type, which consumes 64 bits. 

The proper usage of data types that mentioned in last 
paragraph reduces overall memory usage from 2.8 GB to 800 
MB. Using this method allows us to implement the algorithm in 
platforms that have less RAM, like GPUs and FPGAs. Reducing 
memory usage by about one third leads not only to a better 

memory access, but also to a better consumption of memory 
bandwidth. Moreover, cache miss is reduced.  

C. Data Path Optimization. 

We have used a passing technique in order to avoid some 
parts of computation. The 2𝑥⃗𝑇𝑆−1𝑦⃗ is the part that we have to 
calculate |𝐶| times for each input. To compute this part we need 
a loop, with 𝐷 times iteration, for each element of dataset. We 
observed that many elements of dataset are far from the intended 
input and this can be understood after a few iterations in the loop. 
Therefore, we compare the distance with the furthest among the 
K nearest neighbors computed so far and bypass the remaining 
part of the loop, if the current data element cannot be enlisted in 
nearest neighbors. The pseudo code of this part is presented here: 

Algorithm 1: data path optimization 

1: 𝐷𝑖𝑠𝑡 ←  𝑥𝑇𝑆−1𝑥 + 𝑦𝑇𝑆−1𝑦 ; 

2: 𝑑𝑖𝑠𝑡𝑡𝑒𝑚𝑝 ← 0; 𝑓 ← 0; 𝑚𝑎𝑥𝑡𝑟𝑦  ← 1;  

3: FOR i =1 TO D  STEP 4 DO 

4: FOR  k = 1  TO  4  DO 

5: 𝑑𝑖𝑠𝑡𝑡𝑒𝑚𝑝 ← 𝑑𝑖𝑠𝑡𝑡𝑒𝑚𝑝 + (𝑥(𝑖+𝑘)
𝑇 × 𝑆−1 × 𝑦(𝑖+𝑘)) ; 

6: END DO 

7: IF ((𝐷𝑖𝑠𝑡 − 2 × 𝑑𝑖𝑠𝑡𝑡𝑒𝑚𝑝) > 𝑑𝑖𝑠𝑡𝑙𝑜𝑤𝑒𝑠𝑡[𝑘 − 1]) THEN 

8: 𝑓 ← 𝑓 + 1; 

9: IF (  f > maxtry ) 

10: RETURN; 

11: ELSE  

12: 𝑓 ← 0; 

13: END IF 

14: END DO 

15: 𝑑𝑖𝑠𝑡𝑛𝑒𝑤 = 𝐷𝑖𝑠𝑡 − 2 × 𝑑𝑖𝑠𝑡𝑡𝑒𝑚𝑝; 

16: Sort (𝑑𝑖𝑠𝑡𝑛𝑒𝑤);  // sort new distance between K nearest  

17: RETURN; 
 

We devised an approximation method to be pretty confident 
that the current point will not be in nearest neighbors set. Note 
that while there are both positive and negative numbers in the 
addition of the algorithm, there may always be scenarios that the 
result of addition changes in the last iteration. However, we 
observed that prediction of outcome is admissible.  

The method that we use is obtained from the branch 
prediction technique commonly used in modern processors. 
After each 4 iterations of the loop, we compare the results with 
nearest neighbors list (line 7 in algorithm 1). If the result is 
greater than the greatest element in the set of K nearest 
neighbors, then we change the state of our current situation. The 
overall diagram of this action can be seen in the Fig. 1. 

Initial 

state

Medium 

state

Drop 

state

1

2

3

4

 

Fig. 1 FSM of prediction method 

1, 3: 𝐷𝑖𝑠𝑡 + (2 × 𝑑𝑖𝑠𝑡𝑡𝑒𝑚𝑝 ) < 𝑑𝑖𝑠𝑡𝑙𝑜𝑤𝑒𝑠𝑡[𝑘 − 1] 

2, 4: 𝐷𝑖𝑠𝑡 + (2 × 𝑑𝑖𝑠𝑡𝑡𝑒𝑚𝑝 ) > 𝑑𝑖𝑠𝑡𝑙𝑜𝑤𝑒𝑠𝑡[𝑘 − 1] 



We bypass the rest of the loop if the program enters in the 
drop state (line 10 in algorithm 1). We observed many of dataset 
points need just 8 iterations and the remaining 24 iteration can 
be bypassed. 

IV. EXPERIMENTAL RESULT 

MEMOCODE hardware/software co-design contest is in 
two classes: absolute-performance and cost-adjusted-
performance. We implemented our algorithm on multi-core 
systems. Here is a list of our multi-core platforms: 

 Intel Core i5, 2410M with two cores @ 2.30GHz. 

  Intel Core i7, 960 with four cores @ 2.67GHz. 

 Intel Xeon x5650 with six core @ 2.67GHz. 

 Intel Xeon E5-2650 with eight core @ 2.00GHZ. 

 Intel Xeon Phi 5110P with sixty core @ 1.053 GHz 

We took advantage of multi-core platforms via OpenMP 
programming. To gain better efficiency, we used Intel compiler 
and OpenMP4.0. For the performance evaluation, we 
implemented our approach in various multi core platforms. Even 
though error in two LSBs was acceptable, our program was 
executed without any error in the reported results. 

We tested our implementation on five multi-core platforms. 
The platforms, prices, and execution time on each platform for 
the large input dataset (input data 𝑁 = 1,000 and dataset 𝐶 =
10,000,000) are shown in Table 1. 

TABLE I.  PRICES, AND EXECUTION TIME FOR EACH PLATFORM  

Design 
Intel 

Platform 
Time (S) 

Cost 

(US$) 

Performance 

× Cost 

Speed 

Up 

Naive Xeon 2650 9240 1016 9387748 1 X 

Proposed 

Solution 

corei5 166 35.99 5975 56 X 
corei7 71 100 7100 130 X 

Xeon 5650 35 160 5600 264 X 

Xeon 2650 15 1016 15240 616 X 

Xeon Phi 

5110P 
54 729 39366 171 X 

 

Based on the presented results in the above table, the best 
platform in terms of performance per cost is Intel Xeon 5650; 
the best speed up of these platforms is 616X. Summary of all the 
result are presented in Fig. 2. 

 

Fig. 2 Time, price and performance/cost amount for various multi-core 
processors 

V. CONCLUSION 

In this paper, we presented a CPU implementation of k-
nearest neighbor algorithm based on the Mahalanobis distance. 
Our CPU implementation is 616 times faster than the naïve 
approach of the contest. Our implementation deploys memory 
reduction and decreases bandwidth requirements of k-NN with 
Mahalanobis distance. We also manipulate some parts of 
algorithm to bypass inessential computations and accelerate 
overall execution process. Although two bits deviation error is 
allowed in the definition of the contest problem, our approach is 
100% accurate. Our implementation is the winner of cost-
adjusted-performance of MEMOCODE 2014 Design Contest. 
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