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Abstract—We consider the encrypted all-reduce operation
on multi-core clusters. We derive performance bounds for the
encrypted all-reduce operation and develop efficient algorithms
that are theoretically optimal in that they asymptotically achieve
the performance bounds. We empirically evaluate our encrypted
all-reduce algorithms on production clusters. The results show
that with the right algorithm, encryption can be incorporated
in the all-reduce operation on large messages without significant
overheads on modern multi-core clusters whose compute node
has a large number of cores.

Keywords—Message Passing Interface (MPI), encryption, all-
reduce

I. INTRODUCTION

There is an ongoing trend to move High Performance Com-
puting (HPC) applications to execute in the public cloud. The
security of these applications is becoming a rising concern.
Since a large number of HPC applications are developed using
Message Passing Interface (MPI), efforts have been made
to add encryption to MPI [1], [2], [3], [4], [5] to protect
communications.

MPI Allreduce performs the all-reduce operation among
a group of processes and is one of the most widely used
MPI collective routines in HPC applications. Research shows
that over 40% of the time spent in MPI operations is spent
in the reduction operation [6]. This work considers efficient
algorithms for encrypted MPI Allreduce on contemporary
multi-core clusters where each compute node has many cores
for running MPI processes. We assume that the underlying
network does not support secure communication and develop
efficient algorithms to incorporate encryption to this operation
at the MPI library level to protect inter-node communications.

In a modern multi-core cluster, the encryption and decryp-
tion speed is often slower than the network communication
speed [4]. As such, developing an efficient algorithm for
encrypted all-reduce must take into consideration communica-
tion, encryption, and decryption together. We derive the per-
formance bounds for encrypted all-reduce. We then leverage
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the existing (unencrypted) all-reduce algorithms and design
encrypted all-reduce algorithms that theoretically achieve the
performance bounds. We empirically evaluate the algorithms
on production systems. The results indicate that, with our
encrypted all-reduce algorithms, security can be supported
with negligible overhead for large messages, which confirms
our theoretical analysis.

The rest of the paper is organized as follows. Section II
discusses the background and related work. In Section III, we
analyze the performance bounds and discuss encrypted all-
reduce algorithms. In Section IV, we report the results of
the performance evaluation. Finally, we conclude our work
in Section V.

II. BACKGROUND

A. MPI Allreduce

Message Passing Interface (MPI) [7] is the de facto stan-
dard for developing portable message passing programs. MPI
defines a set of point-to-point and collective communication
routines. MPI Allreduce is an MPI collective operation that
involves a group of processes and combines the values from
all processes in the group through a reduction operation.

B. Threat model

This study assumes that compute nodes are secure, and
the adversary can observe and interfere with network packets.
Hence, only inter-node communication needs to be encrypted
and the intra-node communication is not observable for adver-
sary. There are other threats such as replay attacks where the
adversary replaces a ciphertext by an old one, and side-channel
information such as computational timing, are not addressed
in this study. Since we assume that compute nodes are secure,
cache side-channel attacks are not considered.

C. Encryption

Following Naser et al. [4], we use the Galois-Counter
Mode (GCM) encryption scheme [8] that provably offers both
privacy and integrity. To encrypt a plaintext P by GCM,



reserving a nonce N , i.e., a public value that must appear
at most once per key, is required. Since receiver needs the
same nonce N for decryption, the sender should send both
the nonce N and the ciphertext C. In our implementation, we
pick nonces at random, which is standard-compliant.

We assume that the keys used in GCM have been dis-
tributed (this is usually done in the initialization phase such
as MPI Init), and focus on the performance of encrypted all-
reduce operations where all inter-node communications are
encrypted.

D. Related work

Since the standardization of MPI, many studies have been
done to improve MPI collective performance in different
situations: some focus on architecture-oblivious techniques
[9], [10], [11]; some work on the network topology [12],
[13], [14], [15], [16]; some take advantage of SMP and multi-
core features [17], [18], [19]; some consider special network
features [20]. All-reduce is among the operations considered in
these studies. An overview of the earlier all-reduce algorithms
is given in [21]. The algorithms for all-reduce can be classified
into flat algorithms where all processes are treated the same
and hierarchical algorithms where processes within each node
are treated as a group. Common flat algorithms include the
recursive doubling algorithm [9], Rabenseifner’s algorithm
[21], and the ring algorithm [22]. Hierarchical all-reduce
algorithms are designed for multi-core clusters to capture
the performance difference between intra-node communication
and inter-node communication. In a hierarchical algorithm,
MPI processes within each node are grouped with one or more
processes in the group being designated as leaders that are
in charge of inter-node communications. The hierarchical all-
reduce algorithms include single-leader algorithms [23] and
multi-leader algorithms [24]. The recently developed node-
aware algorithms are all hierarchical algorithms [25], [26],
[27]. Our encrypted all-reduce schemes are built over these
algorithms by incorporating encryption and decryption in the
algorithms.

Encrypted MPI libraries have also been developed [28],
[29], [30], [4]. Earlier encrypted MPI libraries [28], [29], [30]
suffer from various issues, including using outdated security
algorithms and insufficient privacy and integrity support (a
discussion of these issues can be found in [4]). A recent library,
CryptMPI [4], [5] has fixed those issues. However, CryptMPI
uses a naive method to realize collective routines [4]. Such a
method cannot be applied to the all-reduce operation, and thus
CryptMPI does not support encrypted MPI Allreduce. Effi-
cient algorithms for all-gather have been developed by Lahijani
[31]. All-reduce is very different from other collectives that do
not contain computation (reduction operation) in the middle of
the collective operation.

III. ENCRYPTED ALL-REDUCE

We consider encrypted all-reduce of m bytes data on p
processes and N nodes, where each node has ` = p/N
processes. For simplicity, we will assume that the unit for the

reduction operation is byte and that p and N are powers of
two. The algorithms can be slightly modified to work for any
choice of p and N with the same asymptotic complexity. The
experiments in Section IV are based on an implementation of
the general version of the algorithms that handle any p and
N values. With the GCM mode of encryption, a ciphertext
is 28 bytes longer than the corresponding plaintext, but our
analyses will ignore this constant overhead and assume that
ciphertext and plaintext are of the same length for simplicity.
We assume that N ≥ 2 since a single-node all-reduce does
not need encryption.

A. Performance bounds

An encrypted all-reduce operation has four components:
encryption, decryption, communication, and reduction com-
putation. Following [27], we use the postal model for com-
munication and reduction computation:

T = αct+ βcs+ γc (1)

where αc is the per-message start-up cost, βc is the per-
byte communication cost, γ is the flop rate for the reduction
operation, and t, s and c are the number of communication
rounds, bytes, and reduction operations, respectively. This
model implicitly uses the Hockney’s model [32] where com-
municating an m bytes message takes αc + βcm time.

We will also use the Hockney’s model for encryption and
decryption. Encrypting an m-byte message takes αe + βem
time units and decrypting an m-byte message takes αd +βdm
time units. We establish the lower bounds of seven key
performance metrics for encrypted all-reduce:

• rc: the number of communication rounds to complete the
operation,

• sc: the total size of data that at least one process must
send or receive,

• re: the number of encryption rounds,
• se: the amount of data that at least one process must

encrypt,
• rd: the number of decryption rounds, and
• sd: the amount of data that at least one process must

decrypt,
• sr: the amount of reduction operations that at least one

process must perform.

With these metrics, an encrypted all-reduce algorithm will
have at least tc = rc · αc + sc · βc communication time,
te = re · αe + se · βe encryption time, td = rd · αd + sd · βd
decryption time, and tr = γ · sr reduction computation
time. For small messages, rc, re, and rd are the dominating
terms, whereas for large messages, sc, se, sd, and sr will
determine the performance. Depending on how communica-
tion and computation overlap, the total time will be between
max{tc, te, td, tr} and tc + te + td + tr. Since each of these
terms may dominate the performance, the algorithm design
must consider all of them.

s



Table I shows the bounds for the encrypted all-reduce
operation. The lower bounds rc and sc for communication cost
are well known [9], [33], we list them here for completeness
and for comparison to the encryption and decryption costs.
For sr, to compute the results for the reduction of m items
(bytes) on p processes requires a total of (p−1) ·m reduction
operations. Since there are p processes, at least one process
will need to perform (p−1)·m

p ≈ m operations.
To derive lower bounds for encryption and decryption cost,

without loss of generality, we will assume that a process needs
exactly one round to encrypt a plaintext or decrypt a ciphertext
of any size. Additionally, information within a node can be
shared by all processes in the node without extra cost. Hence,
in one round, q plaintexts can be encrypted by q processes,
and likewise q ciphertexts can be decrypted by q processes.

Let us now consider the number of rounds for decryption
(rd). Before the first round of decryption, each node only has
unencrypted data from T0 = 1 node (namely itself), and each
ciphertext contains unencrypted data of just T0 = 1 node.
Since there are ` processes in each node, after the first round
of decryption, each node can decrypt at most ` ciphertexts,
and obtain unencrypted data from at most T1 = (`+ 1) ·T0 =
` + 1 nodes (including its own data), and each ciphertext in
the next round contains unencrypted data of at most T1 nodes.
Likewise, after the second round of decryption, each node can
obtain unencrypted data from at most T2 = (` + 1) · T1 =
(` + 1)2 nodes. By repeating this argument, if the protocol
terminates in rd rounds then at the end of the encrypted gather
operation, each node can obtain unencrypted data from at most
(`+ 1)rd nodes. Since at the end of the operation, each node
needs to have data from all N nodes, N ≤ (`+1)rd , and thus
rd ≥ dlg`+1(N)e =

⌈
lg(N)
lg(`+1)

⌉
. If we assume ` is a constant

then this bound means that rd ∈ Ω
(
lg(p)

)
since N = p

l . The
bound for re is same.

For se, to complete the operation, each node must send its
m bytes information to other nodes (its own data or reductions
results with data from other nodes). At least one process in the
node must encrypt m

` data. Similarly, each node must receive
at least m bytes of data to complete the operation and at least
one process in the node must decrypt m

` bytes data.

B. Encrypted all-reduce algorithms

We use a simple approach to incorporate encryption and de-
cryption that works with any underlying all-reduce algorithm:

TABLE I: Lower bounds for encrypted all-reduce (m-byte
message, p processes, N nodes, ` = p/N )

Metric Lower bound
rc lg(p)
sc Ω(m)

sr
(p−1)m

p
≈ m

re d lg(N)
lg(`+1)

e
se

m
`

rd d lg(N)
lg(`+1)

e
sd

m
`

for every inter-node communication, our scheme encrypts the
message before communication and decrypts the message after
the communication. The research lies in finding and designing
the underlying all-reduce algorithm such that the bounds for
rc, re, and rd can be reached for small messages and that
the bounds for sc, se, sd, and sr can be reached for large
messages.
ALGORITHMS FOR SMALL MESSAGES

Algorithms for small messages optimize for rc, re, and rd.
With our scheme to incorporate encryption and decryption,
clearly, re ≤ rc and rd ≤ rc (if multiple messages can be
communicated concurrently in one phase, the messages can
also be encrypted and decrypted concurrently in that phase).
Hence, conventional all-reduce algorithms that are designed
for small messages, which have a small rc, will yield good
results for re and rd.

A common all-reduce algorithm for small messages is the
recursive doubling (RD) algorithm [9]. RD has lg(p) steps.
In step k (0 ≤ k < lg(p)), each process i exchanges m-byte
data with process i ⊕ 2k and performs the reduction. Hence,
rc = lg(p), sc = lg(p)m, and sr = lg(p)m. Depending on the
process mapping, the rounds for encryption and decryption
may be different (intra-node communication does not require
encryption and decryption). In the worst case when each round
contains inter-node communication, re = rc = lg(p) and
rd = rc = lg(p). In each round, each process with inter-
node communication encrypts and decrypts m-byte messages.
Hence, se = m lg(p) and sd = m lg(p). Theoretically, if we
assume that ` is a constant, N and p are in the same order,
and re and rd are asymptotically optimum.

The hierarchical single-leader algorithm with RD for the
inter-node communication (SL-RD) [23] is also effective for
small messages. In SL-RD, each node has one leader that will
perform the inter-node operations. The all-reduce operation is
performed in three steps. In the first step, an intra-node reduce
operation is performed on each node to gather the reduction
results for each node in the leader process. In the second step,
the leaders in different nodes perform an inter-node all-reduce
operation using the RD algorithm to obtain the all-reduce
results in all of leaders. In the third step, processes within each
node perform an intra-node broadcast operation to distribute
the all-reduce results to all processes. If one ignores intra-
node communication costs, we have rc = re = rd = lg(N),
sc = se = sd = m lg(N), sr = m(lg(N) + lg(`)) (assume
intra-node reduction is done with a tree).

Another effective hierarchical single-leader algorithm,
which we name SL-A, replaces the RD algorithm in the second
step in SL-RD with an encrypted all-gather operation to collect
all data to all leaders. After that, the leaders perform the reduc-
tion operations on all data. This algorithm separates the com-
munication from reduction operations, which can be effective
in practice. The cost of this algorithm depends of the encrypted
all-gather algorithm. Using the O-RD2 encrypted all-gather
algorithm [31] and ignoring intra-node communication costs,
we have rc = re = rd = lg(N), sc = se = sd = m(N − 1),
sr = m(N − 1 + lg(`)).



TABLE II: Performance of encrypted all-reduce algorithms (m-byte message, p processes, N nodes, ` processes per node)

rc sc sr re se rd sd
RD lg(p) m lg(p) m lg(p) lg(p) m lg(p) lg(p) m lg(p)

SL-RD lg(N) m lg(N) m(lg(N) + lg(`)) lg(N) m lg(N) lg(N) m lg(N)
SL-A lg(N) m(N − 1) m(N − 1 + lg(`)) lg(N) m lg(N) lg(N) m(N − 1)

RS 2 lg(p) 2m
(p−1)m

p
≈ m 2 lg(p) 2m 2 lg(p) 2m

RING 2(p− 1) 2m
(p−1)m

p
≈ m 2(p− 1) 2m 2(p− 1) 2m

SL-RS 2 lg(N) 2m m(N−1
N

+ `−1
`

) ≈ 2m 2 lg(N) 2m 2 lg(N) 2m
ML-RD lg(N) (m/`) lg(N) m

`
(lg (N) + (`− 1)) lg(N) (m/`) lg(N) lg(N) (m/`) lg(N)

ML-RS 2 lg(N) 2m/` m
`

(N−1
N

+ (`− 1)) ≈ m 2 lg(N) 2m/` 2 lg(N) 2m/`

ML-RING 2(N − 1) 2m/` m
`

(N−1
N

+ (`− 1)) ≈ m 2(N − 1) 2m/` 2(N − 1) 2m/`

ALGORITHMS FOR LARGE MESSAGES
Algorithms for large messages optimize for sc, se, sd, and

sr. A common algorithm is the Rabenseifner’s algorithm (RS)
[21]. In this algorithm, the all-reduce operation is performed
by a reduce-scatter followed by an all-gather. The reduce-
scatter is done by recursive halving and the all-gather is
done by recursive doubling [21]. With RS, rc = 2 lg(p),
rs = 2p−1

p m ≈ 2m and sr = p−1
p m. When adding

encryption, the rounds and amount of encryption and de-
cryption depend on how the processes are mapped. In the
worst case, re = rc = 2 lg(p), se = sc = 2p−1

p m ≈ 2m,
rd = rc = 2 lg(p), and sd = sc = 2p−1

p m ≈ 2m.
Another algorithm for large messages is the Ring algorithm

(RING) [22]. Like RS, RING also performs a reduce-scatter
followed by an all-gather. However, both reduce-scatter and
all-gather are performed with a ring pattern [22]. With RING,
rc = 2(p − 1), rs = 2p−1

p m ≈ 2m and sr = p−1
p m. When

adding encryption, the rounds and amount of encryption and
decryption depend on how the processes are mapped. In the
worst case, re = rc = 2(p − 1), se = sc = 2p−1

p m ≈ 2m,
rd = rc = 2(p− 1), and sd = sc ≈ 2m.

Single leader hierarchical algorithms can use RS or RING in
the second step. As table II shows, for RS, RING, and SL-RS,
se and sd are 2m, which is significantly larger than the lower
bound m

` , especially when ` is large. Thus, none of these are
optimal for encrypted all-reduce on large messages. Next, we
will introduce algorithms, which are multi-leader hierarchical
algorithms [24], that achieve the lower bounds for sc, sr, se,
and sd.

In a multi-leader hierarchical algorithm, each node has
multiple leader processes that will collectively perform inter-
node operations. The number of leaders can be any value
from 1 to ` in theory. However, for encrypted all-reduce, we
found that making all processes in a node leaders (` leaders)
yields the best performance when m is sufficiently large. In
this approach, the all-reduce operation is performed in three
steps. In the first step, an intra-node reduce-scatter operation
is performed on each node to (1) produce the local reduction
results in the node and (2) to distribute the results evenly
among leaders in the node. This is done by copying data
to shared memory, and then having each of the ` processes
calculate the reduction results of m

` -byte data. Hence, each
node perform (`−1)m

` reduction operations in this step. After
this step, Leader 0 in each node has local reduction results for

the first m
` bytes of the reduction results in the node; Leader

1 has the reduction results for the second m
` bytes of local

reduction results in the node; and so on.
In the second step, Leaders i, 0 ≤ i ≤ ` − 1, across all

nodes form the i-th sub-group. There are ` sub-groups and `
concurrent all-reduce operations are performed, one for each
sub-group, on m

` bytes local reduction results to obtain final
reduction results across all processes. After the second step,
Leader i-th in every node will have final reduction results for
the i-th m

l bytes data. All final reduction results now exist in
each node. In the third step, processes in each node perform
a local all-gather operation to distribute final reduction results
to all processes. Using shared memory, this can be done by
each process copying the results from shared memory to its
local memory.

Our implementation uses shared memory. Different flat all-
reduce algorithms can be used to perform the concurrent sub-
group all-reduce’s in the second step. We will use ML-RD,
ML-RS, and ML-RING to denote the algorithms with RD, RS,
and RING in the second step, respectively. Hence, ignoring the
intra-node communication costs, with RD, we have rc = rd =
re = lg(N), sc = sd = se = m

l lg(N), sr = m
` (lg(N)+`−1);

with RS, we have rc = rd = re = 2 lg(N), sc = sd =
se = 2m

l , sr = m
` (N−1

N + ` − 1) ≈ m; and with RING,
we have rc = rd = re = 2(N − 1), sc = sd = se = 2m

l ,
sr = m

` (N−1
N + `− 1) ≈ m.

Table II summarizes the performance of the algorithms. For
large messages, ML-RS and ML-Ring reach the bounds for sc,
se, sd, and sr. For large messages, each process encrypts and
decrypts O(m

` ) data while communicating O(m) data and per-
forming reduction computation on O(m) data. This indicates
that on modern multi-core clusters where ` is large, encryption
can be supported in the all-reduce operation without significant
overheads. This is confirmed in our experiments.

IV. PERFORMANCE STUDY

A. Experiment setup

We implemented all of the encrypted all-reduce algorithms
listed in Table II in MVAPICH2-2.3.3. We compiled the library
with the default MVAPICH compilation flags and optimization
level O2. We used the AES-GCM-128 encryption scheme in
the BoringSSL cryptographic library [34]; this library was
compiled under default settings and linked with MPI during
the complication of MVAPICH2-2.3.3.



TABLE III: Performance of MPI Allreduce on Noleland (p =
128 and N = 8).

Size

Unencryp.
MVAPICH

Latency
(us)

Encrypted
MVAPICH

Latency
(us)

Best
Encryp.
Latency

(us)

Best
Over-
head

Best
Encryp.
Methods

4B 7.63 14.44 11.52 51.0 SL-A
64B 7.72 14.15 12.18 57.8 SL-A

512B 11.46 18.83 18.59 62.2 SL-A
1KB 13.86 21.87 19.58 41.4 ML-RD
8KB 25.31 43.13 28.38 12.3 ML-RD

32KB 44.42 66.62 45.09 1.7 ML-RD
64KB 67.27 78.08 72.73 7.2 ML-RS
256KB 254.21 341.96 274.53 8.0 ML-RING
1MB 1318.48 1342.49 954.84 -27.6 ML-RS
4MB 5555.11 6720.13 4608.25 -17.0 ML-RING

The experiments were performed on two systems: a lo-
cal Noleland cluster and the Bridges-2 supercomputer at
Pittsburgh Supercomputing Center (PSC) [35]. Noleland is
equipped with Intel Xeon Gold 6130 CPUs with 2.10 GHz
frequency. Each node has 16 cores, 32 threads, and 187GB
DDR4-2666 RAM. This cluster runs CentOS-7, and the under-
lying network is a 100 Gbps Mellanox MT28908 Infiniband.
We allocated nodes manually, and the same nodes were chosen
for all measurements on this cluster. All experiments reported
on Noleland have p = 128, N = 8, and ` = 16.

The second system is the Bridges-2 supercomputer at
Pittsburgh Supercomputing Center (PSC) [35]. We used the
Regular Memory partition that has 504 nodes, each equipped
with 2 AMD EPYC 7742 CPUs and 64 cores per CPU. We
used the nodes with 256GB of RAM for our experiments. This
system has 200Gbps Mellanox ConnectX-6-HDR Infiniband
and runs CentOS-8. All results reported on Bridges-2 have
p = 1024, N = 16, and ` = 64. The mapping of the MPI
ranks is controlled by the system and unknown to us.

We used the OSU Allreduce benchmark from the OSU
benchmark suite [36] and MiniAMR [37] to measure the
latency of all-reduce operation with different algorithms and
message sizes. In the both benchmarks, the main reduction
operation is MPI SUM and the latencies reported in this article
are an average of at least 10 runs for each experiment.

B. Results on Noleland

Table III shows the performance for different sizes on the
Noleland cluster. In this experiment, p = 128, N = 8, ` = 16.
The table shows the performance of the baseline MVAPICH,
encrypted MVAPICH (the encryption scheme directly applied
to MVAPICH), the best performing encrypted algorithm,
and the overhead of the best performing algorithm over the
baseline MVAPICH. We will use unencrypted to denote the
unencrypted MVAPICH, encrypted to denote the encrypted
MVAPICH, and best to denote the best performing algorithm.
MVAPICH uses SL-RD for messages in range of 4B to 2KB,
SR in range of 4KB to 1MB, and reduce-scatter (uses ring
pattern) followed by an all-gather for 2MB and larger sizes.
The table also gives the best performing algorithms.

As shown in the table III, while encrypted exposes signifi-
cant overheads to the operation across all message sizes, best
improves fairly significantly over encrypted. This shows the
effectiveness of the new algorithms. For this configuration,
SL-A is the best for small messages (4B to 512B), and ML-
RD for medium sized messages (1KB to 32KB). For large
messages (64KB and larger), ML-RS and ML-RING have
very similar performance that is much better than the rest. For
1MB and 4MB cases, ML-RS and ML-RING actually perform
better than the unencrypted baseline. This is because (1) the
underlying communication algorithm is more efficient, and (2)
the encryption overhead is very small for large messages with
ML-RS and ML-RING: as shown in our analysis, each process
must communicate O(m) messages while only encrypting and
decrypting O(m

l ) data.
To further understand the results in Table III, Figures 1 and

2 show the performance of the unencrypted and encrypted
algorithms, respectively. Figure 1a shown the unencrypted
performance for medium sized messages (1KB to 32KB),
where both the number of rounds and the total size have
impacts. From Table II, we can see that RS, ML-RD, and ML-
RS are good candidates since they have logarithmic rounds
of communication, encryption, and decryption and relatively
small total sizes. For this message size range and without
encryption, RS is slightly better than ML-RD for 2KB and
4KB messages and slightly worse for other message sizes;
ML-RS is slightly worse than ML-RD across all sizes. When
encryption is incorporated, ML-RD introduces much less over-
heads than RS: se and sd for ML-RD are m

l lg(N), which is
less than 2m for RS. As a results, encrypted ML-RD is much
better than encrypted RS. The encryption overhead for ML-RD
is only slightly more than ML-RS and since the unencrypted
ML-RD is faster than unencrypted ML-RS, encrypted ML-RD
performs better than ML-RS.

For large messages (64KB to 4M), unencrypted ML-RS and
ML-RING perform noticeably better than other algorithms as
shown in Figure 1b. They are also the algorithms that add the
least overhead when encryption is incorporated: se and sd are
the asymptotically optimal 2m

l for these two algorithms. They
achieve the best performance for large messages as shown in
Figure 2b. Additionally, the encryption overhead in ML-RS
and ML-RING is very small: the encrypted and unencrypted
ML-RS and ML-RING have very similar latencies, which
confirms the analysis in Section III.

We also evaluate the all-reduce performance in MiniAMR
[37], which is a 3D-stencil based adaptive mesh refinement
kernel that uses all-reduce extensively. The frequency of Mesh
Refinement is set to 1000. We evaluated MiniAMR for the
number of refinement steps from 4K to 128K. As Table IV
shows, best noticeably improves the encrypted MVAPICH in
this benchmark.

C. Results on PSC Bridges-2

The results from larger scale experiments on PSC Bridges-2
yield similar trends as those from Noleland. Tables V shows
the results on Bridges-2 with p = 1024 and N = 16. Again,
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Fig. 1: Performance of unencrypted all-reduce algorithms

TABLE IV: Performance of miniAMR on Noleland (p = 128
and N = 8).

Number
of

Refin.

Unencryp.
MVAPICH

Latency
(sec)

Encrypted
MVAPICH

Latency
(sec)

Best
Encryp.
Latency

(sec)

Best
Over-
head

Best
Encryp.
Methods

16K 7.99 9.88 8.76 9.6 ML-RD
32K 18.16 21.11 19.94 9.7 ML-RD
64K 55.77 60.32 53.68 -3.7 ML-RD
128K 213.72 228.05 189.13 -11.5 ML-RING

encrypted MVAPICH introduces large overheads across all
message sizes. Best improves the performance significantly.
For message sizes of 16KB or more, best out-performs the
unencrypted baseline. Same explanation as that for Noleland
applies to Bridges-2. Similar to Noleland, SL-A is the best for
small messages in the range of 4B to 128B, but for messages
in the range of 256B to 4KB, SL-RD is winner. Besides this,
ML-RD is the best for the medium sizes in the range from
8KB to 128KB and ML-RS is the best when the message size
is larger than 128KB. This trend is observed in the results from
Noleland. The collected results for miniAMR on the Bridges-2
show that the trend is the same as the results on Noleland.

V. CONCLUSION

In this study, the lower bounds on seven key performance
metrics for encrypted all-reduce are derived. We identify and
develop encrypted all-reduce algorithms that achieve these
bounds. The empirical evaluation on two production systems
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Fig. 2: Performance of encrypted all-reduce algorithms

TABLE V: Performance of MPI Allreduce on PSC Bridges-2
(p = 1024 and N = 16).

Size

Unencryp.
MVAPICH

Latency
(us)

Encrypted
MVAPICH

Latency
(us)

Best
Encryp.
Latency

(us)

Best
Over-
head

Best
Encryp.
Methods

4B 25.57 44.65 43.75 71.2 SL-A
16B 19.82 46.03 36.68 85.07 SL-A

128B 21.78 50.11 43.98 101.93 SL-A
2KB 39.25 72.79 72.79 85.45 SL-RD
4KB 68.07 130.31 119.50 75.55 SL-RD
8KB 92.57 196.75 135.10 45.9 ML-RD
64KB 402.28 571.14 402.21 0.0 ML-RD

128KB 742.12 1045.34 735.77 -0.9 ML-RD
256KB 1428.10 1625.31 1057.95 -25.9 ML-RS
2MB 12687.91 14015.21 8716.61 -31.3 ML-RS
4MB 27541.10 31761.25 12863.05 -53.3 ML-RS

shows that our encrypted all-reduce algorithms achieve sig-
nificantly improvement over naively incorporating encryption
in the algorithms used in the current production MPI library.
Our encrypted algorithms introduce minor overheads for large
messages and out-perform the unencrypted baseline in many
cases. This indicates that the algorithms used in the current
MPI library are not most efficient for modern multi-core
clusters and an update is necessary.
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