
High Performance GPU Implementation of k-NN
Based on Mahalanobis Distance

Mohsen Gavahi, Reza Mirzaei, Abolfazl Nazarbeygi, Armin Ahmadzadehi, Saeid Gorginii
High Performance Computing Laboratory of Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

hpc@ipm.ir

Abstract— the k-nearest neighbor (k-NN) is a widely used
classification technique and has significant applications in various
domains. The most challenging issues in the k-nearest neighbor
algorithm are high dimensional data, the reasonable accuracy of
results and suitable computation time. Nowadays, using parallel
processing and deploying many-core platforms like GPUs is
considered as one of the popular approaches to improving these
issues. In this paper, we present a novel and accurate parallel
implementation of k-NN based on Mahalanobis distance metric in
GPU platform. We design and implement k-NN for GPU
architecture and utilize mathematic and algorithmic techniques to
eliminate repetitive computations. Moreover, in addition, to
taking advantage of different parallelism techniques, we improve
warp management to gain maximum speed up in this
implementation. Via Compute Unified Device Architecture
(CUDA)-enabled GPUs, the acceleration is considerable as
experimental results show the 110X speedup with respect to the
single core CPU implementation. Furthermore, we measure the
energy and power consumption of this algorithm for both CPU
and GPU platforms, where GPU is more energy efficient regarding
this application.

Keywords— k-NN algorithm; Mahalanobis distance; High
throughput; CUDA; GPU.

I. INTRODUCTION

The �-nearest neighbor (�-NN) search algorithm is a
problem in many research and industrial domains such as data
mining, machine learning, business intelligence, scientific
simulation, and bioinformatics. Nowadays, large dataset
computations are common for the aforementioned applications.
Also, the �-NN search algorithm is needed to handle a huge
amount of data in many pragmatic approaches.

Let us consider a set ������� contains � points
�������={�� , ��, … , ��}, where each point is described in a
�-dimensional space and an input set can be defined by
�������� in the same dimension. The �-NN search algorithm
finds � nearest points to input points (��������) among the
set �������. There are several metrics to compute the distance
between two specified points, such as Euclidean, Manhattan,
Mahalanobis and Kullback-Leibler. Since the results based on
Mahalanobis metric is consequence of effects of all points in
�������, it has high demand in various applications such as
stereo matching [1], texture classification [2], object tracking [3]
and gene selection [4]. Therefore, in this paper, we take
advantage of this distance metric to find k-nearest neighbors.
The Mahalanobis distance measures as a difference between two
vectors �⃗ and �⃗ of the same distribution with the covariance

matrix �. The distance can be calculated by the following
equation where �⃗ and �⃗ are �-dimension input vectors and ���

is �×� dimension inverse covariance matrix.

����(�⃗, �⃗) = �(�⃗ − �⃗)����(�⃗ − �⃗) (1)

�-NN classifier scans all the elements in the dataset points
(�������) for each element of input set (��������). The
complexity required for brute force scanning is �(� × �) where
� and � are dataset size and input set size, respectively. Hence,
the �-NN algorithm is computationally intensive [5] and for
large datasets, the computation time on a single core machine is
not reasonable. For this type of algorithm, parallel processing is
considered as a conventional approach to managing the
computation complexity and achieve a practical response time.
Independent data computations in �-NN algorithm make it a
good candidate for many core GPU platforms. In addition,
extensive computations of Mahalanobis distance convince us to
utilize massive parallelism and computation power of GPUs. To
this end, we use methods like reforming of warp arrangement,
revising reduction technique and improve management of
memory hierarchy.

The rest of this paper is organized as follows: Section II is
dedicated for background, where the previous works on
implementation of �-NN algorithm and CUDA architecture as a
dominant framework for parallel programming on graphics
processing units are reviewed. We present a mathematic
reformulation of Mahalanobis distance in Section III. The
proposed design for parallel implementation of the �-NN
algorithm based on Mahalanobis distance is presented in Section
IV. The experimental results on various multi-core CPU and
many-core GPU are shown in Section V. The paper is concluded
in Section VI.

II. BACKGROUND

The required background is presented in this section. First,
the previous works on implementation of the �-NN algorithm
are revised, after that CUDA architecture, which is chosen the
framework for implementation of proposed method, is concisely
reviewed.

A. Related works

The simplest approach for the �-NN algorithm, named linear
search, explores all points and computes distances to find nearest
neighbors [6]. Since, searching a large dataset needs a huge
amount of computing power, some implementation of �-nearest
neighbors uses approximate methods such as KD-tree [7], �-NN

i A. Ahmadzadeh is also affiliated with Sharif University, Tehran, Iran
ii S. Gorgin is also affiliated with Iranian Research Organization for
 Science and Technology (IROST), Tehran, Iran.
978-1-4673-9181-8/15/$31.00 ©2015 IEEE

graph methods [8] and hashing [9] which were introduced in
order to decrease complexity and computation time [6].
However, these methods do not handle high dimensional data
appropriately.

One of the approximate algorithms is space partitioning [6].
This algorithm classifies the feature space into several parts and
each part includes a subset of dataset points. The parts with the
maximum possibility of neighbor’s existence are searched to
find �-nearest neighbors. This type of algorithms reduces the
search space, subsequently the computation decrease. Some of
the algorithms use specific data structures such as K-D-B tree
[7] and quad tree [10], in order to better access dataset points.

The K-D-B tree structure combines properties of K-D tree
and the binary tree. There are several ways to classify the points;
for example the K-D-B tree structure uses rectangular bounding
and R* tree [11] uses spheres bounding. Although spheres
bounding based algorithms save 50% disk space, but for multi-
dimensional data points get more volume than rectangular
bounding structure. To overcome this drawback, the SR-tree
structure was introduced [12]. In fact, the SR-tree structure by
combining R* tree and SS-tree find nearest neighbors points for
non-uniform and high dimensional data points. This structure
takes advantage of a rectangular bounding structure by dividing
the search space to smaller rectangular bounding. However,
specifying a region by the intersection of the bounding sphere
and bounding rectangle of underlying points is the highlighted
feature of the SR-tree. To divide the feature space based on the
data distribution, these structures create unbalanced partitions
which reduce the performance of an algorithm. On the other
hand, � -means clustering algorithm, like other space
partitioning algorithms, needs a well-defined data structure [13].
This algorithm generally used with the Euclidian distance metric
and is usually not propitious in GPUs, while global memory's
latency may have the negative impact on performance.

Garcia et al. [14] introduced a fast �-NN algorithm. It is
implemented in C and MATLAB using GPU with CUDA. It
uses two GPU-kernels, one for computing distances and the
other for sorting calculated distances in parallel. It uses comb
sort and insertion sort method and compares the results for
different �s. In another work, in Ref. [15], They use CUDA's
CUBLAS library with Euclidian parameter. Also, in [16]
parallel implementation of the �-NN search algorithm is done
with two different sorting methods: insertion sort and quick sort,
while stream computing to gain a better performance is used.

B. CUDA Architecture

General-purpose computing on graphics processing units
(GP-GPU) is the concept of using graphics processing unit
(GPU) to execute the tasks which is usually done by CPUs. The
parallel computing makes possible to achieve prominent speed-
ups by computational power of the GPU. GPUs using massively
parallel architecture with a large number of multiprocessors,
named Stream Multiprocessors (SM). These SMs are well suited
to handle huge computations.

Each SM has a fast shared memory that is shared among all
the processors. For communication between SMs, global
memory can be used which is much slower than shared memory,
however, is more spacious for holding data.

The CPU, which is called host in this context, can read
(write) from (to) the global memory which is persistently
accessed by the kernel launches of the same application. Both
global and shared memory can be manipulated by the
programmers. The rapid increases in the performance of
graphics hardware have made GPU a strong candidate for high-
performance computing applications. GPUs now include fully
programmable processing units that follow a stream
programming model.

CUDA is NVIDIA`s C-like language appropriate for
programming GPUs that focus on massively data-parallel and
task-parallel kernels. GPUs use hundreds of thousands of
organized threads into a grid of thread blocks. After 2006, all of
NVIDIA's GPUs can provide a suitable API for non-graphics
applications by CUDA programming model. The CPU treats a
CUDA device as a many-core coprocessor.

NVIDIA's GPUs perform sequential threads in SIMT
(Single Instruction, Multiple Thread) fashions; all cores in the
same SM execute the same instruction simultaneously. Threads
are grouped into blocks and each thread has a unique local index
in its block. The blocks are grouped in a grid and each block has
a unique local index in the grid. Each 32 threads are actually
executed the same instruction at the same time, this group of
thread are called warp.

III. MATHEMATIC REFORMULATION

Recently, we implemented a cost-efficient version of �-NN
search algorithm using Mahalanobis distance metric on
multicore CPUs [17].We have used some optimization methods
such as mathematic optimization of [17] in present work to
improve this algorithm for GPU implementation.

Computing Mahalanobis distance includes matrix
multiplication, which needs a huge amount of addition,
multiplication and memory access. In serial programming, these
computations consist of two nested loops that the algorithm
complexity is �(��). These two nested loop can be decreased to
one simple loop by exploiting multi-threads in GPU platform.

One of the approaches that presented in [17] is reformulating
Mahalanobis distance to decrease the computation. Let �⃗ be a
member of the �������� and �⃗ be a member of the
�������. Mahalanobis distance equation can be reformulated
as:

�����
� (�⃗, �⃗) = (�⃗ − �⃗)����(�⃗ − �⃗)

(�±�)����±��

������������ (�⃗� − �⃗�)���(�⃗ − �⃗)

 = (�⃗���� − �⃗����)(�⃗ − �⃗)

 = (�⃗�����⃗ − �⃗�����⃗ − �⃗�����⃗ + �⃗�����⃗) (2)

All parts of the equation (2) are scalar values. In addition,
�⃗�����⃗ and �⃗�����⃗ are equal, since ��� is a positive semi-
definite and symmetric matrix. So, the equation (2) can be
rewritten as:

�����
� (�⃗, �⃗) = �⃗�����⃗ − 2�⃗�����⃗ + �⃗�����⃗ (3)

In equation (3), �⃗�����⃗ is executed � times and is not a
large portion of the computations. Moreover, �⃗�����⃗ can be
computed in the first iteration and then use it for other ones. The
middle expression in (3) is executed � times for each input,
however, the ���� portion of it can also be calculated only one
time. This part is the bottleneck of the algorithm and consumes
most of the computing power. Consequently, this method
reduces the �-dimensional computation of last part to just a
scalar pre-computation and decreases memory access about �
times. Finally, we decreased � × � times computation to just �
times (� ≫ �).

Moreover, ��� is a covariance matrix which is symmetric
and the native implementation of matrix multiplication can be
considered:

(����)� = � �����
��

�

���

, � = 1, … , �

This equation can be rewritten with two partial
sums(����)� = (��)� + (��)� where:

(��)� = 2 × � �����
��

�

�����

, � = 1, … , �

(��)� = � �����
��

�

���

, � = 1, … , �

With using above mathematic optimization, the access
memory and computation will be reduced.

IV. PROPOSED IMPLEMENTATION

In this section, we present a high throughput parallel
implementation of �-NN search algorithm with Mahalanobis
distance metric using CUDA-enabled GPU. In this algorithm,

multiple blocks of threads are launched, where each thread
computes the distance between the input set and a data set. A
kernel needs to compute distance and sort the � closest
neighbors as results.

As shown in Figure 1, each member of ��������, which
is called �����, is placed in shared memory of GPU’s block.
Each ����� includes � different dimensions that is assigned to
a thread of GPU, and is referred by its thread index (i.e.
�ℎ���������). Similarly each member of �������, which is
called ����, include � different dimension. As mention in
section III, to avoid redundant repetitive computation, we
compute some parts only one time, e.g. �⃗�����⃗ in equation (3),
and call them ���������������. In functions which are used
in this design, such as ��������_���, we use various
optimization methods like warp managing and reduction
technique. The pseudo code of this part is presented in Algorithm
1.

A. Reforming of warp arrangement

There are many methods for implementing the kernel. In the
simplest one, a member of �������� (i.e. �����), is allocated
to each block of threads and assign one thread to each block.
This thread does computation on one of ����� dimension and in
the next step, next dimension of ����� would be computed. This
process continues until the distance computations for all
dimensions are done. The problem of this method is that in each
step, the GPU platform resources are not fully utilized. In fact,
in each step, a block of threads gets resources of a warp, however
just one thread is used. In this condition, other resources become
idle and this would lead to performance reduction and increasing
of the total time of computation. Moreover, there are so many
call and rewrite operations which forces a heavy time overhead
on the kernel.

In another method, several inputs are assigned to each block.
In this method, the number of threads which assigned to each
block is equal to the number of ������ assigned to that block.
Like the previous method, each thread does computation of one
of the ������. All the threads are executed in parallel. The
problem which is observed in this method is branch divergence.
Branch divergence occurs when at least one thread of a warp,
chooses a different path in conditional commands. In this

Algorithm 1: Parallel k-NN

Thread ← Input[threadIndex];
FOR i=1 TO D DO
 temp[threadIndex] ← Thread × ���[i][threadIndex];
 var ← PARALLEL_SUM (temp[1..D]);
 IF (threadIndex ==i)
 Resp[i] ← var × Thread;
END DO
Result_1 ← PARALLEL_SUM (Resp[1..D]);
FOR Next=1 TO DATASETSIZE DO
 Distance ← 0;
 temp_product[threadIndex] ← Thread × Data [Next × D+ threadIndex];
 Result_2 ← PARALLEL_SUM (temp_product [1..D]);
 IF (threadIndex ==0)
 Distance ← Result_1 – 2×Result_2 + PreComputedData[Next];
 Sort (Distance); // sort new distance between K nearest
 END IF
END DO
RETURN;

 Distribution of data in GPU

situation, all threads need to wait for this distinguished thread.
Therefore, occurrence of divergence forces too much time
overhead to computation time.

We can better occupy GPU by assigning each ����� to one
block and distribute different dimensions to different threads of
the same block. Since the computation of each dimension is
independent of other ones and all thread in the same block can
be executed in parallel. In this method, if ����� dimension is
less than maximum warp size, part of warp resources would be
underutilized. Thus, for maximum utilization of warp resources
the ����� dimension should be equal to warp size.

B. Utilization of reduction technique

The computation time of sum operation is considered as a
bottleneck. To fully utilize the parallel infrastructure of
summation, parallel reduction technique should be used. The
process of combining multiple parallel threads results into one
overall result is called reduction technique.

The sequential execution of summation takes � steps;
however, as shown in figure 2, parallelization of reduction
operation takes just ���� steps. Since there is a data dependency
between steps, in order to make all threads synchronize, we
should insert barriers.

There are two options for applying barriers: the first one is
using built-in API (such as __����ℎ�ℎ����() in CUDA)
between critical sections. This option will cause to increase
computational time. The second option is using inherent
synchronization feature of threads of a warp. In this method, if
the number of threads in the block is less than warp size, built-
in API can be removed and threads will be synchronized
intrinsically. The pseudo code of modified parallel sum

reduction, which is called ��������_���, for Input with 32
dimensions is presented as follows:

If maximum warp size is greater than ����� dimension, it is
possible to put more than one ����� in each block. For example,
if the maximum warp size and ������ dimension are considered
32 and 8, respectively, then 4 ������ can be put simultaneously
in each warp.

C. Memory management

Since shared memory is faster than global memory, we tried
to place more data on the shared memory, in order to better
manage the memory.

Moreover, another challenge in this research was a high
amount of memory access. It is solved by optimizing memory
usage which is handled by big bandwidth between global
memory and shared memory.

V. EXPERIMENTAL EVALUATION

For the performance evaluation, we implement the presented
method in various many-core platforms with two different
architectures. Table I shows a list of many-core platforms which
are used for evaluation. We took advantage of GPU platforms
via CUDA programming model. To gain better efficiency, we
used NVidia Toolkit and CUDA 7.0 API which was the most up
to date Toolkit.

At first, we compared our approach implemented in CUDA
with the one implemented in CUBLAS library (CUDA

PARALLEL_SUM

IF (Index<16) THEN
 Thread [Index] += Thread [Index+16];
 Thread [Index] += Thread [Index+8];
 Thread [Index] += Thread [Index+4];
 Thread [Index] += Thread [Index+2];
 Thread [Index] += Thread [Index+1];
END IF

 Reduction structure

TABLE I. SPECIFICATION OF MULTI-CORE AND MANY-CORE PLATFORMS

Commercial Name
Micro

Architecture
Core freq

(MHz)
Max freq
(MHz)

Max Memory
Bandwidth(GB/s)

Fab Process
(nm)

of
Cores

TDP
(Watt)

Memory
clock
(GHz)

corei7 960 Nehalem 3200 3460 25.6 45 4 130 1.066

Xeon E5-2650 v3 Haswell 2300 3000 68 22 10 105 2.133

GTX480 Fermi 700 1401 177.4 40 480 250 1.84

K20x Kepler 732 784 250 28 2688 235 2.6

TABLE II. COMPARE COMPUTATION TIME OF SERIAL, CUBLAS AND

CUDA IMPLEMENTATION OF PRESENTED APPROACH BASE ON SECOND

Platform 8 Dim. 16 Dim. 32 Dim.
Intel corei7

960
845 2650 9240

NVidia K20x
CUBLAS

567 883 1423

NVidia K20x
CUDA

538 809 1316

implementation of linear algebra library). We use double
precision BLAS3 function to achieve high performance.
CUBLAS library is self-contained at the API level, that is, no
direct interaction with the CUDA driver is necessary. This
library attaches to a single GPU and does not auto-parallelize
across multiple GPUs. CUBLAS provides separate functions to
multiply matrices and vectors that has high-speed functionality
and uses power optimization techniques. CUDA and CUBLAS
are penalized by the time needed to transfer data from host
memory (CPU) to device memory (GPU) and back. For high
dimensions and a large number of inputs, this penalty becomes
more negligible. Computation of matrix multiplication (�⃗ −
�⃗)����(�⃗ − �⃗) represented the main part of the computation
time, so we implement this section by using NVIDIA CUBLAS
library. Table II shows computation times of different
implementations of proposed algorithm. In this paper, we find
10 nearest neighbors (� = 10) for the large input set (� =
1,000) and dataset has (� = 10,000,000) members and the
dimension is variable from 8 to32. Also, insertion sort is used
as sorting algorithm. As Table II shows, our CUDA
implementation has better execution time even than CUBLUS
implementation. Since, we use GPU resource more efficient in
CUDA implementation rather than CUBLAS library.

By checking table II, one can note that the parallelization
(CUDA and CUBLAS) has achieved better performance in
terms of the dimension than CPU single core implementation.
The speed-up achieved by CUDA or CUBLAS in comparison
with CPU implementation increased significantly with the
number of points and dimension. The speed-up achieved by
CUBLAS in comparison with CUDA increased much less.
However, CUBLAS computes the distances more efficiently. In
this experiment, CUDA and CUBLAS were up to 7X and 6.45X
faster than the serial implementation in CPU, respectively.

For evaluation of our mathematic modification, we run two
different versions of code on Intel corei7 960. One of these codes

exploits our mathematic modification and the other one does not.
We use a single core of this processor to compare this
modification in a sequential approach. As shown in Table III,
the modified version has the better result. So after that we only
use modified version.

We evaluate performance of proposed method by comparing
the execution time of �-NN on a GeForce GTX 480 and Tesla
K20x card with a modified serial version of �-NN program on
an Intel corei7 CPU for the mentioned �������� and
�������(�=1,000 and �=10,000,000). Figure 3 shows the
execution time of various platforms for different dimensions.
Experimental results present 110X speedup of the modified and
parallelized implementation which is exposed in Figure 3 rather
than non-modified and sequential implementation which is
showed in Table III.

Figure 4 shows the variation of proposed algorithm base on
different � value. To obtain these results, we consider the
dimensions of data point 32 and computation is done by Nvidia
Tesla K20x. In this figure, left vertical Y axis shows time for
1000 input and right vertical Y axis shows time for 2000 input.
It is obvious that the time computation of algorithm for different
�, between 10 and 160, is roughly constant and proposed
algorithm is independent of the � variation.

We also use NVidia Management Library (NVML) for
measure power consumption of GPU platform [18] and Intel
Power Governor SDK [19] for evaluation power consumption of
CPU platform. As mentioned in [18], the run-time power of a

TABLE III. COMPARE MATHEMATIC MODIFIED AND NON-MODIFIED

VERSIONS BASE ON SECOND

Version 8 Dim. 16 Dim. 32 Dim.
Non-Modified 845 2650 9248

Modified 136 212 337

TABALE IV. AVERAGE POWER CONSUMPTION (����), COMPUTATION TIME (T) AND CORRESPONDING ENERGY (E) MEASURED FOR THE

EXECUTION OF PRESENTED IMPLEMENTATION

Device Idle
(W)

8 Dim. 16 Dim. 32 Dim.
����(W) T (s) E (J) ����(W) T (s) E (J) ����(W) T (s) E (J)

Intel Xeon
2650

17 36 720 25961 56 1766 99736 69 4297 296493

NVidia Tesla
K20x

25 80 28 2240 82 44 3608 84 84 7056

Fig. 3. Execution time for different dimension – X axis show different
platforms and Y axis show time base on second

136

36 28

212

59 44

337

114 84

0

100

200

300

400

Intel corei7 960
– single core

GTX480 K20x

8 Dim 16 Dim 32 Dim

Fig. 4. Execution time for different � - X axis shows different � and
Y axis shows time base on second

155.5

155.7

155.9

156.1

156.3

156.5

156.7

156.9

86.5

86.7

86.9

87.1

87.3

87.5

87.7

87.9

k = 10 k = 20 k = 40 k = 80 k = 160

Ti
m

e

Input=1000 Input=2000

kernel is measured with the NVML library by running the kernel
on a thread and NVML on another thread (by using POSIX
Threads usually referred to as Pthreads). The results of this
experiment for various dimensions are shown in table IV. Both
platforms are ones of the best and the most up to date devices in
their category and are designed and manufactured base on latest
techniques for reducing energy consumptions of the device. As
table IV exposes, the energy consumption of our implementation
on GPU platform is much less than CPU platform.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a GPU implementation of the �-
nearest neighbor algorithm based on the Mahalanobis distance
metric. Our GPU implementation is 110 times faster than the
sequential programming approach. This implementation needs
less memory and decreases bandwidth requirements of the �-NN
search algorithm. To accelerate overall execution time, we
eliminate redundant repetitive tasks in the �-NN algorithm. Our
comparison shows that GPU implementation has better energy
consumption rather than CPU. This implementation can be
scaled into several GPUs, that it is one of our future works.

ACKNOWLEDGMENT

 We are grateful to Prof. Hamid Sarbazi Azad, Head of the
school of computer science, for his support and useful guidance.
We also would like to acknowledge Mr. Mohsen Mahmoudi
Aznaveh and all member of HPC lab at IPM.

REFRENCES

[1] S. Kim, B. Ham, B. Kim, and K. Sohn, "Mahalanobis Distance Cross-
Correlation for Illumination-Invariant Stereo Matching,," IEEE
Transactions on Circuits and Systems for Video Technology, pp.
1844,1859, Nov. 2014.

[2] M.-C. L. Chi-Man Pun "Log-polar wavelet energy signatures for rotation
and scale invariant texture classification," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 25, pp. 590-603, 2003.

[3] P. Gabriel, J. B. Hayet, J. Piater, and J. Verly, "Object tracking using color
interest points," in Advanced Video and Signal Based Surveillance, 2005.
AVSS 2005. IEEE Conference on, 2005, pp. 159-164.

[4] K. Z. Mao and W. Tang, "Recursive Mahalanobis Separability Measure
for Gene Subset Selection," IEEE/ACM Trans. Comput. Biol.
Bioinformatics, vol. 8, pp. 266-272, 2011.

[5] J. Han and M. Kamber, Data mining: concepts and techniques: Morgan
Kaufmann Publishers Inc., 2000.

[6] R. Weber, H.-J. Schek, and S. Blott, "A Quantitative Analysis and
Performance Study for Similarity-Search Methods in High-Dimensional
Spaces," presented at the Proceedings of the 24rd International
Conference on Very Large Data Bases, 1998.

[7] J. T. Robinson, "The K-D-B-tree: a search structure for large
multidimensional dynamic indexes," presented at the Proceedings of the
1981 ACM SIGMOD international conference on Management of data,
Ann Arbor, Michigan, 1981.

[8] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang, "Fast
approximate nearest-neighbor search with k-nearest neighbor graph,"
presented at the Proceedings of the Twenty-Second international joint
conference on Artificial Intelligence - Volume Volume Two, Barcelona,
Catalonia, Spain, 2011.

[9] P. Indyk and R. Motwani, "Approximate nearest neighbors: towards
removing the curse of dimensionality," presented at the Proceedings of
the thirtieth annual ACM symposium on Theory of computing, Dallas,
Texas, USA, 1998.

[10] R. A. Finkel and J. L. Bentley, "Quad trees a data structure for retrieval
on composite keys," Acta Inf., vol. 4, pp. 1-9, 1974.

[11] T. Sellis, N. Roussopoulos, and C. Faloutsos, "The R+-tree: A dynamic
index for multi-dimensional objects," 1987.

[12] N. Katayama and S. i. Satoh, "The SR-tree: an index structure for high-
dimensional nearest neighbor queries," SIGMOD Rec., vol. 26, pp. 369-
380, 1997.

[13] J. MacQueen, "Some methods for classification and analysis of
multivariate observations," in Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1:
Statistics, Berkeley, Calif., 1967, pp. 281-297.

[14] V. Garcia, E. Debreuve, and M. Barlaud, "Fast k nearest neighbor search
using GPU," in Computer Vision and Pattern Recognition Workshops,
2008. CVPRW'08. IEEE Computer Society Conference on, 2008, pp. 1-6.

[15] V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud, "K-nearest neighbor
search: Fast GPU-based implementations and application to high-
dimensional feature matching," in ICIP, 2010, pp. 3757-3760.

[16] S. Liang, Y. Liu, C. Wang, and L. Jian, "Design and evaluation of a
parallel k-nearest neighbor algorithm on CUDA-enabled GPU," in Web
Society (SWS), 2010 IEEE 2nd Symposium on, 2010, pp. 53-60.

[17] A. Ahmadzadeh, R. Mirzaei, H. Madani, M. Shobeiri, M. Sadeghi, M.
Gavahi, K. Jafari, M. M. Aznaveh, and S. Gorgin, "Cost-efficient
implementation of k-NN algorithm on multi-core processors," in Formal
Methods and Models for Codesign (MEMOCODE), 2014 Twelfth
ACM/IEEE International Conference on, 2014, pp. 205-208.

[18] K. Kasichayanula, D. Terpstra, P. Luszczek, S. Tomov, S. Moore, and G.
D. Peterson, "Power aware computing on GPUs," in Application
Accelerators in High Performance Computing (SAAHPC), 2012
Symposium on, 2012, pp. 64-73.

[19] M. Dimitrov. (2012). Intel Power Governor. Available:
https://software.intel.com/en-us/articles/intel-power-governor

