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Abstract— the k-nearest neighbor (k-NN) is a widely used 
classification technique and has significant applications in various 
domains. The most challenging issues in the k-nearest neighbor 
algorithm are high dimensional data, the reasonable accuracy of 
results and suitable computation time. Nowadays, using parallel 
processing and deploying many-core platforms like GPUs is 
considered as one of the popular approaches to improving these 
issues. In this paper, we present a novel and accurate parallel 
implementation of k-NN based on Mahalanobis distance metric in 
GPU platform. We design and implement k-NN for GPU 
architecture and utilize mathematic and algorithmic techniques to 
eliminate repetitive computations. Moreover, in addition, to 
taking advantage of different parallelism techniques, we improve 
warp management to gain maximum speed up in this 
implementation. Via Compute Unified Device Architecture 
(CUDA)-enabled GPUs, the acceleration is considerable as 
experimental results show the 110X speedup with respect to the 
single core CPU implementation. Furthermore, we measure the 
energy and power consumption of this algorithm for both CPU 
and GPU platforms, where GPU is more energy efficient regarding 
this application. 

Keywords— k-NN algorithm; Mahalanobis distance; High 
throughput; CUDA; GPU. 

I.  INTRODUCTION 

The �-nearest neighbor (�-NN) search algorithm is a 
problem in many research and industrial domains such as data 
mining, machine learning, business intelligence, scientific 
simulation, and bioinformatics. Nowadays, large dataset 
computations are common for the aforementioned applications. 
Also, the �-NN search algorithm is needed to handle a huge 
amount of data in many pragmatic approaches. 

Let us consider a set ������� contains � points 
�������={�� , ��, … , ��}, where each point is described in a 
�-dimensional space and an input set can be defined by 
�������� in the same dimension. The �-NN search algorithm 
finds � nearest points to input points (��������) among the 
set �������. There are several metrics to compute the distance 
between two specified points, such as Euclidean, Manhattan, 
Mahalanobis and Kullback-Leibler. Since the results based on 
Mahalanobis metric is consequence of effects of all points in 
�������, it has high demand in various applications such as 
stereo matching [1], texture classification [2], object tracking [3] 
and gene selection [4]. Therefore, in this paper, we take 
advantage of this distance metric to find k-nearest neighbors. 
The Mahalanobis distance measures as a difference between two 
vectors �⃗ and �⃗ of the same distribution with the covariance 

matrix �. The distance can be calculated by the following 
equation where �⃗ and �⃗ are �-dimension input vectors and ���

 

is �×� dimension inverse covariance matrix. 

����(�⃗, �⃗) = �(�⃗ − �⃗)����(�⃗ − �⃗)               (1)

�-NN classifier scans all the elements in the dataset points 
(�������) for each element of input set (��������). The 
complexity required for brute force scanning is �(� × �) where 
� and � are dataset size and input set size, respectively. Hence, 
the �-NN algorithm is computationally intensive [5] and for 
large datasets, the computation time on a single core machine is 
not reasonable. For this type of algorithm, parallel processing is 
considered as a conventional approach to managing the 
computation complexity and achieve a practical response time. 
Independent data computations in �-NN algorithm make it a 
good candidate for many core GPU platforms. In addition, 
extensive computations of Mahalanobis distance convince us to 
utilize massive parallelism and computation power of GPUs. To 
this end, we use methods like reforming of warp arrangement, 
revising reduction technique and improve management of 
memory hierarchy.  

The rest of this paper is organized as follows: Section II is 
dedicated for background, where the previous works on 
implementation of �-NN algorithm and CUDA architecture as a 
dominant framework for parallel programming on graphics 
processing units are reviewed. We present a mathematic 
reformulation of Mahalanobis distance in Section III. The 
proposed design for parallel implementation of the �-NN 
algorithm based on Mahalanobis distance is presented in Section 
IV. The experimental results on various multi-core CPU and 
many-core GPU are shown in Section V. The paper is concluded 
in Section VI.  

II. BACKGROUND 

The required background is presented in this section. First, 
the previous works on implementation of the �-NN algorithm 
are revised, after that CUDA architecture, which is chosen the 
framework for implementation of proposed method, is concisely 
reviewed. 

A. Related works 

The simplest approach for the �-NN algorithm, named linear 
search, explores all points and computes distances to find nearest 
neighbors [6]. Since, searching a large dataset needs a huge 
amount of computing power, some implementation of �-nearest 
neighbors uses approximate methods such as KD-tree [7], �-NN 
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graph methods [8] and hashing [9] which were introduced in 
order to decrease complexity and computation time [6]. 
However, these methods do not handle high dimensional data 
appropriately.  

One of the approximate algorithms is space partitioning [6]. 
This algorithm classifies the feature space into several parts and 
each part includes a subset of dataset points. The parts with the 
maximum possibility of neighbor’s existence are searched to 
find �-nearest neighbors. This type of algorithms reduces the 
search space, subsequently the computation decrease. Some of 
the algorithms use specific data structures such as K-D-B tree 
[7] and quad tree [10], in order to better access dataset points.  

The K-D-B tree structure combines properties of K-D tree 
and the binary tree. There are several ways to classify the points; 
for example the K-D-B tree structure uses rectangular bounding 
and R* tree [11] uses spheres bounding. Although spheres 
bounding based algorithms save 50% disk space, but for multi-
dimensional data points get more volume than rectangular 
bounding structure. To overcome this drawback, the SR-tree 
structure was introduced [12]. In fact, the SR-tree structure by 
combining R* tree and SS-tree find nearest neighbors points for 
non-uniform and high dimensional data points. This structure 
takes advantage of a rectangular bounding structure by dividing 
the search space to smaller rectangular bounding. However, 
specifying a region by the intersection of the bounding sphere 
and bounding rectangle of underlying points is the highlighted 
feature of the SR-tree. To divide the feature space based on the 
data distribution, these structures create unbalanced partitions 
which reduce the performance of an algorithm. On the other 
hand, � -means clustering algorithm, like other space 
partitioning algorithms, needs a well-defined data structure [13]. 
This algorithm generally used with the Euclidian distance metric 
and is usually not propitious in GPUs, while global memory's 
latency may have the negative impact on performance. 

Garcia et al. [14] introduced a fast �-NN algorithm. It is 
implemented in C and MATLAB using GPU with CUDA. It 
uses two GPU-kernels, one for computing distances and the 
other for sorting calculated distances in parallel. It uses comb 
sort and insertion sort method and compares the results for 
different �s. In another work, in Ref. [15], They use CUDA's 
CUBLAS library with Euclidian parameter. Also, in [16] 
parallel implementation of the �-NN search algorithm is done 
with two different sorting methods: insertion sort and quick sort, 
while stream computing to gain a better performance is used. 

B. CUDA Architecture 

General-purpose computing on graphics processing units 
(GP-GPU) is the concept of using graphics processing unit 
(GPU) to execute the tasks which is usually done by CPUs. The 
parallel computing makes possible to achieve prominent speed-
ups by computational power of the GPU. GPUs using massively 
parallel architecture with a large number of multiprocessors, 
named Stream Multiprocessors (SM). These SMs are well suited 
to handle huge computations. 

Each SM has a fast shared memory that is shared among all 
the processors. For communication between SMs, global 
memory can be used which is much slower than shared memory, 
however, is more spacious for holding data. 

The CPU, which is called host in this context, can read 
(write) from (to) the global memory which is persistently 
accessed by the kernel launches of the same application. Both 
global and shared memory can be manipulated by the 
programmers. The rapid increases in the performance of 
graphics hardware have made GPU a strong candidate for high-
performance computing applications. GPUs now include fully 
programmable processing units that follow a stream 
programming model. 

CUDA is NVIDIA`s C-like language appropriate for 
programming GPUs that focus on massively data-parallel and 
task-parallel kernels. GPUs use hundreds of thousands of 
organized threads into a grid of thread blocks. After 2006, all of 
NVIDIA's GPUs can provide a suitable API for non-graphics 
applications by CUDA programming model. The CPU treats a 
CUDA device as a many-core coprocessor. 

NVIDIA's GPUs perform sequential threads in SIMT 
(Single Instruction, Multiple Thread) fashions; all cores in the 
same SM execute the same instruction simultaneously. Threads 
are grouped into blocks and each thread has a unique local index 
in its block. The blocks are grouped in a grid and each block has 
a unique local index in the grid. Each 32 threads are actually 
executed the same instruction at the same time, this group of 
thread are called warp. 

III. MATHEMATIC REFORMULATION 

Recently, we implemented a cost-efficient version of �-NN 
search algorithm using Mahalanobis distance metric on 
multicore CPUs [17].We have used some optimization methods 
such as mathematic optimization of [17] in present work to 
improve this algorithm for GPU implementation.  

Computing Mahalanobis distance includes matrix 
multiplication, which needs a huge amount of addition, 
multiplication and memory access. In serial programming, these 
computations consist of two nested loops that the algorithm 
complexity is �(��). These two nested loop can be decreased to 
one simple loop by exploiting multi-threads in GPU platform. 

One of the approaches that presented in [17] is reformulating 
Mahalanobis distance to decrease the computation. Let �⃗ be a 
member of the �������� and �⃗  be a member of the 
�������. Mahalanobis distance equation can be reformulated 
as: 

�����
� (�⃗, �⃗) = (�⃗ − �⃗)����(�⃗ − �⃗)

                       
(�±�)����±��

������������ (�⃗� − �⃗�)���(�⃗ − �⃗)

                        = (�⃗���� − �⃗����)(�⃗ − �⃗)

                        = (�⃗�����⃗ − �⃗�����⃗ − �⃗�����⃗ + �⃗�����⃗) (2)

All parts of the equation (2) are scalar values. In addition, 
�⃗�����⃗ and �⃗�����⃗ are equal, since ��� is a positive semi-
definite and symmetric matrix. So, the equation (2) can be 
rewritten as: 

�����
� (�⃗, �⃗) = �⃗�����⃗ − 2�⃗�����⃗ + �⃗�����⃗          (3)



In equation (3), �⃗�����⃗ is executed � times and is not a 
large portion of the computations. Moreover, �⃗�����⃗ can be 
computed in the first iteration and then use it for other ones. The 
middle expression in (3) is executed � times for each input, 
however, the ���� portion of it can also be calculated only one 
time. This part is the bottleneck of the algorithm and consumes 
most of the computing power. Consequently, this method 
reduces the �-dimensional computation of last part to just a 
scalar pre-computation and decreases memory access about � 
times. Finally, we decreased � × � times computation to just � 
times (� ≫ �). 

Moreover, ��� is a covariance matrix which is symmetric 
and the native implementation of matrix multiplication can be 
considered: 

(����)� = � �����
��

�

���

, � = 1, … , �

This equation can be rewritten with two partial 
sums(����)� = (��)� + (��)�  where: 

(��)� = 2 × � �����
��

�

�����

, � = 1, … , �

(��)� = � �����
��

�

���

, � = 1, … , �

With using above mathematic optimization, the access 
memory and computation will be reduced. 

IV. PROPOSED IMPLEMENTATION 

In this section, we present a high throughput parallel 
implementation of �-NN search algorithm with Mahalanobis 
distance metric using CUDA-enabled GPU. In this algorithm, 

multiple blocks of threads are launched, where each thread 
computes the distance between the input set and a data set. A 
kernel needs to compute distance and sort the � closest 
neighbors as results.   

As shown in Figure 1, each member of ��������, which 
is called �����, is placed in shared memory of GPU’s block. 
Each ����� includes � different dimensions that is assigned to 
a thread of GPU, and is referred by its thread index (i.e. 
�ℎ���������). Similarly each member of �������, which is 
called ����, include � different dimension. As mention in 
section III, to avoid redundant repetitive computation, we 
compute some parts only one time, e.g. �⃗�����⃗ in equation (3), 
and call them ���������������. In functions which are used 
in this design, such as ��������_���, we use various 
optimization methods like warp managing and reduction 
technique. The pseudo code of this part is presented in Algorithm 
1.  

A. Reforming of warp arrangement 

There are many methods for implementing the kernel. In the 
simplest one, a member of �������� (i.e. �����), is allocated 
to each block of threads and assign one thread to each block. 
This thread does computation on one of ����� dimension and in 
the next step, next dimension of ����� would be computed. This 
process continues until the distance computations for all 
dimensions are done. The problem of this method is that in each 
step, the GPU platform resources are not fully utilized. In fact, 
in each step, a block of threads gets resources of a warp, however 
just one thread is used. In this condition, other resources become 
idle and this would lead to performance reduction and increasing 
of the total time of computation. Moreover, there are so many 
call and rewrite operations which forces a heavy time overhead 
on the kernel. 

In another method, several inputs are assigned to each block. 
In this method, the number of threads which assigned to each 
block is equal to the number of ������ assigned to that block. 
Like the previous method, each thread does computation of one 
of the ������. All the threads are executed in parallel. The 
problem which is observed in this method is branch divergence. 
Branch divergence occurs when at least one thread of a warp, 
chooses a different path in conditional commands. In this 

Algorithm 1: Parallel k-NN 

Thread ← Input[threadIndex]; 
FOR i=1 TO D DO 
        temp[threadIndex] ← Thread × ���[i][ threadIndex]; 
        var ← PARALLEL_SUM (temp[1..D]); 
        IF (threadIndex ==i) 
                Resp[i] ←  var × Thread; 
END DO 
Result_1 ← PARALLEL_SUM (Resp[1..D]); 
FOR  Next=1  TO  DATASETSIZE  DO 
        Distance ← 0; 
        temp_product[threadIndex] ← Thread  × Data [Next × D+ threadIndex]; 
        Result_2 ← PARALLEL_SUM (temp_product [1..D]); 
        IF (threadIndex ==0)  
                Distance ← Result_1 – 2×Result_2 + PreComputedData[Next]; 
                Sort (Distance); // sort new distance between K nearest  
        END IF 
END DO 
RETURN; 
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situation, all threads need to wait for this distinguished thread. 
Therefore, occurrence of divergence forces too much time 
overhead to computation time.  

We can better occupy GPU by assigning each ����� to one 
block and distribute different dimensions to different threads of 
the same block. Since the computation of each dimension is 
independent of other ones and all thread in the same block can 
be executed in parallel. In this method, if ����� dimension is 
less than maximum warp size, part of warp resources would be 
underutilized. Thus, for maximum utilization of warp resources 
the ����� dimension should be equal to warp size. 
  

B. Utilization of reduction technique 

The computation time of sum operation is considered as a 
bottleneck. To fully utilize the parallel infrastructure of 
summation, parallel reduction technique should be used. The 
process of combining multiple parallel threads results into one 
overall result is called reduction technique. 

The sequential execution of summation takes � steps; 
however, as shown in figure 2, parallelization of reduction 
operation takes just ���� steps. Since there is a data dependency 
between steps, in order to make all threads synchronize, we 
should insert barriers. 

There are two options for applying barriers: the first one is 
using built-in API (such as __����ℎ�ℎ����( ) in CUDA) 
between critical sections. This option will cause to increase 
computational time. The second option is using inherent 
synchronization feature of threads of a warp. In this method, if 
the number of threads in the block is less than warp size, built-
in API can be removed and threads will be synchronized 
intrinsically. The pseudo code of modified parallel sum 

reduction, which is called ��������_���, for Input with 32 
dimensions is presented as follows: 

 

If maximum warp size is greater than ����� dimension, it is 
possible to put more than one ����� in each block. For example, 
if the maximum warp size and ������ dimension are considered 
32 and 8, respectively, then 4 ������ can be put simultaneously 
in each warp. 

 

C. Memory management 

Since shared memory is faster than global memory, we tried 
to place more data on the shared memory, in order to better 
manage the memory. 

Moreover, another challenge in this research was a high 
amount of memory access. It is solved by optimizing memory 
usage which is handled by big bandwidth between global 
memory and shared memory. 

V. EXPERIMENTAL EVALUATION 

For the performance evaluation, we implement the presented 
method in various many-core platforms with two different 
architectures. Table I shows a list of many-core platforms which 
are used for evaluation. We took advantage of GPU platforms 
via CUDA programming model. To gain better efficiency, we 
used NVidia Toolkit and CUDA 7.0 API which was the most up 
to date Toolkit. 

At first, we compared our approach implemented in CUDA 
with the one implemented in CUBLAS library (CUDA 

PARALLEL_SUM  

IF (Index<16) THEN 
 Thread [Index] += Thread [Index+16];        
 Thread [Index] += Thread [Index+8]; 
 Thread [Index] += Thread [Index+4];       
 Thread [Index] += Thread [Index+2];       
 Thread [Index] += Thread [Index+1];   
END IF 

 

  

 Reduction structure 

TABLE I.  SPECIFICATION OF MULTI-CORE AND MANY-CORE PLATFORMS 

Commercial Name 
Micro 

Architecture 
Core freq 

(MHz) 
Max freq 
(MHz) 

Max Memory 
Bandwidth(GB/s) 

Fab Process 
(nm) 

# of 
Cores 

TDP 
(Watt) 

Memory 
clock 
(GHz) 

corei7 960 Nehalem 3200 3460 25.6 45 4 130 1.066 

Xeon E5-2650 v3 Haswell 2300 3000 68 22 10 105 2.133 

GTX480 Fermi  700 1401 177.4 40 480 250 1.84 

K20x Kepler 732 784 250 28 2688 235 2.6 

 

TABLE II.  COMPARE COMPUTATION TIME OF SERIAL, CUBLAS AND 

CUDA IMPLEMENTATION OF PRESENTED APPROACH BASE ON SECOND 

Platform 8 Dim. 16 Dim. 32 Dim. 
Intel corei7 

960 
845 2650 9240 

NVidia K20x  
CUBLAS 

567 883 1423 

NVidia K20x 
CUDA 

538 809 1316 

 



implementation of linear algebra library). We use double 
precision BLAS3 function to achieve high performance. 
CUBLAS library is self-contained at the API level, that is, no 
direct interaction with the CUDA driver is necessary. This 
library attaches to a single GPU and does not auto-parallelize 
across multiple GPUs. CUBLAS provides separate functions to 
multiply matrices and vectors that has high-speed functionality 
and uses power optimization techniques. CUDA and CUBLAS 
are penalized by the time needed to transfer data from host 
memory (CPU) to device memory (GPU) and back. For high 
dimensions and a large number of inputs, this penalty becomes 
more negligible. Computation of matrix multiplication (�⃗ −
�⃗)����(�⃗ − �⃗) represented the main part of the computation 
time, so we implement this section by using NVIDIA CUBLAS 
library. Table II shows computation times of different 
implementations of proposed algorithm. In this paper, we find 
10 nearest neighbors (� = 10) for the large input set (� =
1,000) and dataset has (� = 10,000,000) members and the 
dimension is variable from 8 to32. Also, insertion sort is used 
as sorting algorithm. As Table II shows, our CUDA 
implementation has better execution time even than CUBLUS 
implementation. Since, we use GPU resource more efficient in 
CUDA implementation rather than CUBLAS library. 

By checking table II, one can note that the parallelization 
(CUDA and CUBLAS) has achieved better performance in 
terms of the dimension than CPU single core implementation. 
The speed-up achieved by CUDA or CUBLAS in comparison 
with CPU implementation increased significantly with the 
number of points and dimension. The speed-up achieved by 
CUBLAS in comparison with CUDA increased much less. 
However, CUBLAS computes the distances more efficiently. In 
this experiment, CUDA and CUBLAS were up to 7X and 6.45X 
faster than the serial implementation in CPU, respectively. 

For evaluation of our mathematic modification, we run two 
different versions of code on Intel corei7 960. One of these codes 

exploits our mathematic modification and the other one does not. 
We use a single core of this processor to compare this 
modification in a sequential approach. As shown in Table III, 
the modified version has the better result. So after that we only 
use modified version. 

We evaluate performance of proposed method by comparing 
the execution time of �-NN on a GeForce GTX 480 and Tesla 
K20x card with a modified serial version of �-NN program on 
an Intel corei7 CPU for the mentioned �������� and 
�������(�=1,000 and �=10,000,000). Figure 3 shows the 
execution time of various platforms for different dimensions.  
Experimental results present 110X speedup of the modified and 
parallelized implementation which is exposed in Figure 3 rather 
than non-modified and sequential implementation which is 
showed in Table III.  

Figure 4 shows the variation of proposed algorithm base on 
different � value. To obtain these results, we consider the 
dimensions of data point 32 and computation is done by Nvidia 
Tesla K20x. In this figure, left vertical Y axis shows time for 
1000 input and right vertical Y axis shows time for 2000 input. 
It is obvious that the time computation of algorithm for different 
�, between 10 and 160, is roughly constant and proposed 
algorithm is independent of the � variation.  

We also use NVidia Management Library (NVML) for 
measure power consumption of GPU platform [18] and Intel 
Power Governor SDK [19] for evaluation power consumption of 
CPU platform. As mentioned in [18], the run-time power of a 

TABLE III. COMPARE MATHEMATIC MODIFIED AND NON-MODIFIED 

VERSIONS BASE ON SECOND 

Version 8 Dim. 16 Dim. 32 Dim. 
Non-Modified 845 2650 9248 

Modified 136 212 337 

 

TABALE IV. AVERAGE POWER CONSUMPTION (����  ), COMPUTATION TIME (T) AND CORRESPONDING ENERGY (E) MEASURED FOR THE 

EXECUTION OF PRESENTED IMPLEMENTATION  

Device Idle 
(W) 

8 Dim. 16 Dim. 32 Dim. 
����(W) T (s) E (J) ����(W) T (s) E (J) ����(W) T (s) E (J) 

Intel Xeon 
2650 

17 36 720 25961 56 1766 99736 69 4297 296493 

NVidia Tesla 
K20x 

25 80 28 2240 82 44 3608 84 84 7056 

 

 

Fig. 3.  Execution time for different dimension – X axis show different 
platforms and Y axis show time base on second 
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Fig. 4.  Execution time for different � - X axis shows different � and 
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kernel is measured with the NVML library by running the kernel 
on a thread and NVML on another thread (by using POSIX 
Threads usually referred to as Pthreads). The results of this 
experiment for various dimensions are shown in table IV. Both 
platforms are ones of the best and the most up to date devices in 
their category and are designed and manufactured base on latest 
techniques for reducing energy consumptions of the device. As 
table IV exposes, the energy consumption of our implementation 
on GPU platform is much less than CPU platform.  

VI. CONCLUSION AND FUTURE WORK 

In this paper, we presented a GPU implementation of the �-
nearest neighbor algorithm based on the Mahalanobis distance 
metric. Our GPU implementation is 110 times faster than the 
sequential programming approach. This implementation needs 
less memory and decreases bandwidth requirements of the �-NN 
search algorithm. To accelerate overall execution time, we 
eliminate redundant repetitive tasks in the �-NN algorithm. Our 
comparison shows that GPU implementation has better energy 
consumption rather than CPU. This implementation can be 
scaled into several GPUs, that it is one of our future works.  
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