
Performance of Software-based Encrypted MPI Communication
over Container Clusters

Mohsen Gavahi, Abu Naser, Mehran Sadeghi Lahijani, Cong Wu, Zhi Wang, and Xin Yuan,
Department of Computer Science, Florida State University, Tallahassee, FL 32306

Email: {gavahi,naser,sadeghil,wu,zwang,xyuan}@cs.fsu.edu

Abstract—We study the performance of software-based se-
cure communication infrastructure for HPC Message Passing
Interface (MPI) applications in container clusters. Specifically,
extensive experiments are performed using micro- and appli-
cation benchmarks to evaluate the encrypted MPI communica-
tion performance. Container built-in encrypted communication
schemes including Docker Swarm and Kubernetes Antrea
and Calico, as well as CryptMPI, a secure MPI library, are
evaluated and compared. Our results confirm the findings in
earlier studies that for some MPI applications, running in
the container environment with unencrypted communication
introduces only minor overheads over running on the bare
metal system. However, when the communications are en-
crypted, all of the container built-in software-based encrypted
communication mechanisms that we evaluated incur very large
overheads in all of our experiments for both micro-benchmarks
and application benchmarks. On the other hand, CryptMPI,
which encrypts and decrypts messages in the MPI library,
achieves much higher performance than the container built-
in encryption schemes.

Keywords-Performance, MPI, Encryption, Container,
Docker, Singularity

I. INTRODUCTION

We study the performance of encrypted communication
for HPC applications developed with Message Passing In-
terface (MPI) on container clusters. The methods in the
container environment (or cloud platforms in general) to
support encrypted communication can be classified into
hardware-based and software-based. The hardware-based
solution is to equip compute nodes with smartNICs that
have hardware-enabled encryption offload technology [1].
With the hardware solution, the encryption and decryption
are performed by hardware in the smartNICs at the line rate.
For systems whose compute nodes do not have smartNICs, a
software-based solution, which performs encryption and de-
cryption in the software, can be used. Major containerization
technologies, including Docker Swarm [2] and Kubernetes
Antrea [3] and Calico [4], have built-in software encrypted
communication schemes.

Existing studies on the performance of running MPI
applications on containers do not consider encrypted com-
munication [5], [6]. These studies compare the performance
of MPI applications running on container clusters to that on
the bare metal system with unencrypted communication. The
conclusion is that for the applications studied, the overhead

introduced by container execution is not significant [5], [6].
The performance of encrypted MPI communication over
container clusters, however, has not been thoroughly as-
sessed, especially in the context of running MPI applications.
This is the focus of this work.

We perform extensive experiments to evaluate the per-
formance of software-based encrypted MPI communica-
tion over container clusters. The experiments use micro-
benchmarks from OSU benchmark suite [7] as well as appli-
cation benchmarks from the NAS parallel benchmarks [8].
Both Docker and Singularity are studied; major container
technologies for software-based encrypted communication
including Docker Swarm and Kubernetes Antrea and Calico
are evaluated and compared. Additionally, we also study
the performance of an alternative to the container built-
in encrypted communication schemes for MPI applications,
CryptMPI [9], [10], a secure MPI library that performs mes-
sage encryption and decryption in the MPI library. CryptMPI
supports encrypted MPI communication over unencrypted
communication channels. The major findings of this study
include the following:

• The performance of Docker and Singularity is sim-
ilar either with unencrypted communication or with
encrypted communication in our experiments. Overall,
Docker Swarm has slightly better performance than
Singularity with Kubernetes for both encrypted and
unencrypted communications. We did not observe any
performance advantage of Singularity although it was
designed to run HPC applications.

• For unencrypted communication, both Docker and Sin-
gularity achieve high MPI communication performance
when the message size is sufficiently large, introducing
only minor overheads over the bare metal system. We
observe that for BT, CG, LU, MG and SP in the
NAS parallel benchmarks, the overheads introduced by
container execution for both Docker and Singularity are
less than 10%, which confirms the findings in earlier
studies [5], [6].

• For encrypted communication, all container built-in
schemes in our evaluation (Docker Swarm, Kubernates
Antrea and Calico) slow down the communication
dramatically, up to a factor of 15. The current container



built-in encrypted communication schemes do not pro-
vide high performance encrypted MPI communication.

• CryptMPI achieves much higher performance than all
of the container built-in encryption schemes. In some
situations, CryptMPI is faster by a factor of more than
10. This indicates that there is significant room for
improvement in the current container built-in software-
based encrypted communication schemes.

II. ENCRYPTED COMMUNICATION OVER CONTAINER
CLUSTERS

Containers such as Docker [2] and Singularity [11] en-
capsulate complex programs with their dependencies in
isolated environments and offer fast, customizable, portable,
and flexible deployments of applications and workloads. To
deploy distributed applications that run on many containers
over multiple hosts, the containers for the applications need
to be managed to work in concert for the applications. This
is termed container orchestration. The Docker containers
can be orchestrated by Docker Swarm (Docker running in
the Swarm mode) or Kubernetes [12] while Singularity is
orchestrated by Kubernetes.

Container orchestration manages the networking among
containers. Due to the importance of encrypted communi-
cation, both Docker Swarm and Kubernetes have options to
use encrypted communication between nodes. For encrypted
MPI communication, another choice is to use a secure MPI
library that performs encryption and decryption in the MPI
library. CryptMPI [9], [10] is one of such libraries. In the
following, we will discuss these options to support secure
communication for MPI applications over container clusters.

A. Encrypted communication with Docker Swarm

Docker Swarm supports network security in three levels.
First, an isolated network for each application is provided by
the overlay driver: different Docker networks are firewalled
from one another. Second, the control plane of Docker
networks is secured using Public Key Infrastructure (PKI).
All control plane communications are encrypted with mutual
transport level security (TLS). Third, the data plane is
secured with a separate mechanism. The encryption mode
of overlay networks can be enabled at the time of creation
to encrypt all user traffic between nodes with a secured
channel. The encryption method used in Docker Swarm
is Internet Protocol Security (IPSec) which uses the AES
algorithm in GCM mode [13]. This work evaluates the
performance of this component for MPI applications.

B. Encrypted communication with Kubernetes

Networking with Kubernetes is complex. In general, net-
working configurations and traffic are handled through a
combination of internal resources and external services such
as Container Network Interface (CNI) [14] plugins. CNI is a
network framework that allows the dynamic configuration of

networking resources and exposes a simple set of interfaces
for adding and removing a container from a network. Ku-
bernetes uses a CNI plugin to create the virtual network
interface that a container can use, and to provide added
functions and features that enhance network security. Our
experiments evaluate two popular plugins: Antrea [3] and
Calico [4], which are known for their effective encryption
methods. Antrea utilizes IPSec [13], a widely adopted en-
cryption protocol suite, while Calico leverages WireGuard,
a relatively new encryption protocol.

C. CryptMPI

CryptMPI [9], [10] is a high-performance secure MPI
library that encrypts all MPI inter-node messages. With
CryptMPI, encrypted MPI communication can be achieved
over unsecure communication channels. CryptMPI incorpo-
rates the state-of-the-art AES-GCM encryption scheme (128-
bit keys) that supports both privacy and integrity. Note that
128-bit AES-GCM is also used by IPSec. CryptMPI incor-
porates many techniques to improve encrypted MPI com-
munication performance. For point-to-point communication
of large messages, various techniques including overlapping
communication with computation, pipelined communication,
and multi-threading are employed [10]. To improve the
performance of collective operations, novel algorithms were
designed for many MPI collective operations [15], [16].

III. PERFORMANCE OF ENCRYPTED MPI
COMMUNICATION OVER CONTAINERS

We perform extensive experiments to evaluate the per-
formance of encrypted MPI communication over containers
clusters with different technologies. Next, we will first
discuss the experimental settings and then report the results.

A. Experimental setting and methodology

The hardware used in the experiments is a local cluster,
called NoleLand. Each compute node on NoleLand runs
CentOS-7 and is equipped with two Intel Xeon Gold 6240
CPUs at 2.60 GHz frequency, with 36 cores and 192GB
DDR4-2933 RAM. Each node is equipped with a 25Gbps
Broadcom BCM57414 NetXtreme-E RDMA Ethernet net-
work for networking.

The experiments are carried out with different containers
and different container orchestration systems. Both Docker
[2] (version 23.0.1) and Singularity [11] (version 3.8.7-
1.el7) are studied. For Docker clusters, the containers can be
orchestrated with Docker Swarm or Kubernetes (kubectl ver-
sion v1.17.5). For Singularity clusters, we used Singularity-
CRI [17] which is Singularity-specific implementation of
Kubernetes CRI. The CNI plugins for Kubernetes studied
are Calico [4] (calicoctl version v3.24.5) and Antrea [3]
(version v1.5.3). The same Docker image was used in all
experiments, one container per node. The Docker image runs
Alpine Linux (version v3.15). For Singularity, we converted



the identical Docker image into the Singularity format and
performed experiments with the same settings as those on
Docker clusters.

CryptMPI runs on all of the container cluster config-
urations. CryptMPI built over MPICH-3.3 is used in the
evaluation. The library is compiled with the default compiler
flags (including the -O2 flag). CryptMPI uses BoringSSL
cryptographic library [18] with 128-bit keys which uses the
AES-GCM encryption scheme.

Micro-benchmarks and application benchmarks are used
in the evaluation. For standalone evaluation of the per-
formance of encrypted MPI point-to-point and collective
communication, the OSU benchmark suite [7] is used. In
each experiment, we ran the benchmark with the default
number of warm-iterations, at least 10 times, up to 100
times, until the standard deviation is within 5% of the
arithmetic mean. If after 100 measurements, the standard
deviation was still too large then we kept repeating the
experiments until the 99% confidence interval was within
1% of the mean. The average of the experiments is reported.

For application benchmarks, we use BT, CG, LU, MG,
SP, and FT from the NAS parallel benchmarks [8]. Each
application benchmark is repeated 10 times and the average
is reported.

B. Point-to-point communication

Table I shows the results for MPI point-to-point commu-
nication on Docker clusters with different system settings.
The results are measured using the pingpong benchmark in
OSU benchmark suite. As can be seen from the table, when
message size is small, containers introduce large overheads
(about 117% overheads for 4-byte message size). However,
when the message size is large, the overhead is small. For ex-
ample, for the 256KB message size, the overhead is 21%; for
the 1MB message size, the overhead is negligible (less than
1%). This indicates that the unencrypted communication
infrastructure for containers does not introduce significant
overheads when the message size is sufficiently large.

Docker with Kubernetes Calico performs slightly worse
than Antrea, and its results are omitted to save space. As
can be seen in the table, the overheads for encrypted MPI
communication with Docker Swarm and Kubernetes are
very large regardless of the message sizes. For example for
1MB message size, the overhead of encrypted MPI over
unencrypted MPI is 11.7 times for Docker Swarm and 15.0
times for Kubernetes Antrea.

For small messages, CryptMPI performs worse than
Docker Swarm and Kubernetes Antrea. CryptMPI does
not optimize point-to-point communication with small mes-
sages: it basically performs the encryption/decryption op-
erations like IPSec in the user domain. Thus, it is not
surprising that the performance is worse than container built-
in schemes like Docker Swarm, which performs the encryp-
tion/decryption in the system. For large messages, CryptMPI

employs a number of optimizations [10] as discussed in
Section II, and achieves much higher performance. For 1MB
messages, CryptMPI only introduces a 27.4% overhead over
the unencrypted scheme and almost 9 times faster than
Docker Swarm and 11 times faster than Kubernetes Antrea.

The results on Singularity are shown in Table II. The
trends in the results for Singularity are very similar to those
for Docker. For unencrypted communication, Singularity
introduces large overheads for small messages, but not for
large messages. For encrypted communication, both Calico
and Antrea introduces large overheads, especially for large
messages. The performance is CryptMPI is worse than
Calico and Antrea for small messages, but significantly
better for large messages. For 1MB messages, CryptMPI
is a factor of more than 10 better than Kubernetes Calico
and Antrea.

Table I: MPI point-to-point communication time (in
micro seconds) on Docker clusters with different system
settings

Size
Unencr.

Bare
Metal

Unencr.
Docker
Swarm

Encrypted
Docker
Swarm

Encrypted
K8s Docker

Antrea

CryptMPI
Docker
Swarm

4B 1.53E1 3.32E1 5.31E1 6.20E1 7.68E1
64B 1.77E1 3.47E1 5.54E1 6.46E1 7.84E1
2KB 2.70E1 5.27E1 1.11E2 1.47E2 8.18E1
16KB 4.68E1 7.30E1 2.75E2 3.70E2 9.04E1

256KB 3.00E2 3.64E2 3.57E3 5.04E3 4.75E2
1MB 9.75E2 9.77E2 1.24E4 1.56E4 1.27E3

Table II: MPI point-to-point communication time in
micro seconds on Singularity clusters with different
system settings

Size
Unencr.

Bare
Metal

Unencr.
K8s Sing.

Calico

Encrypted
K8s Sing.

Calico

Encrypted
K8s Sing.

Antrea

CryptMPI
K8s Sing

Calico
4B 1.53E1 4.66E1 6.14E1 5.97E1 9.57E1

64B 1.77E1 5.08E1 6.48E1 6.31E1 9.85E1
2KB 2.70E1 7.74E1 1.61E2 1.50E2 1.05E2
16KB 4.68E1 8.56E1 4.26E2 3.88E2 1.13E2

256KB 3.00E2 5.45E2 6.22E3 5.47E3 6.81E2
1MB 9.75E2 1.30E3 1.95E4 1.71E4 1.40E3

The overheads of encrypted point-to-point communica-
tions with different system settings is plotted in Figure 1.
For each system configuration, the overhead is defined as the
performance of encrypted communication over unencrypted
communication with the same system configuration. For
CryptMPI, the overhead when it runs over Docker Swarm is
reported. From the figure, it is clear that all container built-
in encrypted communication mechanisms have a similar
trend. The overheads are relatively small when the message
size is small (less than 100%). When the message size is
large, the overheads become very large (more than 1000%).
In a modern computing system like our experimental sys-
tem, single thread encryption and decryption throughput



is faster than 25Gbps Ethernet speed in our experiments.
Thus, the overheads are more than the computation time for
encryption and decryption. We believe that the encryption
and decryption computation interferes with the container
execution, and introduces other forms of overheads beyond
the encryption and decryption calculation such as context
switching overheads.

Another interesting result is that Singularity performs
slightly worse than Docker overall for both unencrypted and
encrypted communication. The same trend is observed in the
performance of collective communication and application
benchmarks in our experiments. This is a bit surprising,
given that Singularity was designed for HPC workloads.
We believe this is because the popularity of Docker has
resulted in more improvements in the Docker platform than
in the Singularity platform, and Docker is no longer at
a disadvantage in terms of performance in comparison to
Singularity.

0%

500%

1000%

1500%

4B 64B 2KB 16KB 256KB 1MB

O
ve

rh
ea

d
(%

)

Message Size

Swarm-Docker Calico-Docker
Antrea-Docker CryptMPI-Docker
Calico-Singularity Antrea-Singularity

Figure 1: Overheads of encrypted point-to-point com-
munication for different system settings.

C. Collective communication

MPI has many collective operation routines. These col-
lective routines involve multiple parties and the commu-
nication is more intensive than point-to-point communica-
tion with many concurrent communications. Here, we will
present the results for a representative collective operation
MPI_Allgather. The general observation is that the container
built-in encrypted communication schemes introduce large
overheads for the collective operations while CryptMPI per-
forms significantly better. This applies not only to the results
shown in the paper, but also to other collective operations
such as MPI_Alltoall, MPI_Allreduce, and MPI_scatter.

Table III shows the performance of MPI_Allgather over
Docker clusters with different system settings. The exper-
iments are performed on 8 physical nodes and 128 MPI
processes (N = 8 and p = 128). The format of the table
is the same as that in Table I. For small message sizes,
the overheads for MPI_Allgather is similar to to those for

the point-to-point communication. For example, for the 4
bytes message size, the overhead is 125% (4 bytes point-
to-point communication has an overhead of 117%). The
overheads decrease as the message size increases. For the
1MB message size, the overhead is 63%. In comparison
to point-to-point communication (Table I), the overhead
is slightly larger for small messages and much larger for
large messages. All-gather has many concurrent point-to-
point communications. For small message sizes, the system
is able to handle many concurrent communications. As
such the overheads are roughly the same that those for
a single point-to-point communication of small messages.
For large messages, the system cannot handle many concur-
rent communications; and the concurrent communications
interfere with one another, resulting in higher overheads in
comparison to communicating a single flow. So the results
are not surprising.

Table III: Communication times in micro seconds for
all-gather on OSU benchmarks with different system
settings of Docker (p = 128 and N = 8).

Size
Unencr.

Bare
Metal

Unencr.
Docker
Swarm

Encrypted
Docker
Swarm

Encrypted
K8s Docker

Antrea

CryptMPI
Docker
Swarm

4B 1.64E2 3.70E2 1.51E3 1.55E3 1.71E2
64B 1.93E2 3.59E2 2.80E3 2.85E3 2.12E2
2KB 1.45E3 1.67E3 6.98E4 7.00E4 6.04E2
16KB 3.54E3 4.58E3 1.60E4 1.61E4 1.74E3

256KB 3.84E4 6.19E4 2.85E5 3.07E5 2.76E4
1MB 1.11E5 1.82E5 1.04E6 1.06E6 8.64E4

Docker Swarm and Kubernetes Antrea exhibit similar
performance. Both have poor performance. Depending on
message sizes, encrypted MPI_Allgather with both Docker
Swarm and Kubernetes Antrea is between 3.5 to 48.1 times
slower than the unencrypted MPI_Allgather on the bare
metal system and between 2.5 to 40.2 times slower than
the unencrypted MPI_Allgather on Docker Swarm.

CryptMPI’s performance rivals the unencrypted MPI over
Bare Metal. This can be attributed to CryptMPI’s highly
optimized encrypted collective communication algorithms
for both large and small messages. Note that CryptMPI’s
point-to-point performance is worse than Docker Swarm and
Kubernetes Antrea, and much worse than the unencrypted
MPI over bare metal, but the many communications in
a collective operation like MPI_Allgather gives CryptMPI
ample opportunities to improve performance, mostly through
algorithm redesign. Thus, even for small messages where
CryptMPI has worse encrypted point-to-point communi-
cation performance than Docker Swarm and Kubernetes
Antrea, CryptMPI out-performs Docker Swarm and Ku-
bernetes Antrea to a very large degree in the collective
operation.

Figure 2 summarizes the encrypted communication over-
heads for MPI_Allgather with different system settings. This



is with respect to the baseline of the corresponding unen-
crypted communication time in the container environment.
As discussed earlier, for the all-gather operation, encrypted
communication introduces high overheads (from around
150% to more than 800%) over the baseline across mes-
sage sizes. For this operation, among the container built-in
encryption schemes, Calico-Docker and Calico-Singularity
performs clearly worse than others while all other schemes
have similar performance for most message sizes. All con-
tainer built-in encrypted communication schemes do not
perform well for this collective. CryptMPI, with its novel
encrypted collective algorithms, achieves much better per-
formance in the container environment and out-performs its
baseline (the default MPI library) across all message sizes.
This is becuase CryptMPI uses much better encrypted all-
gather algorithms than the baseline unencrypted all-gather
algorithms in the default MPI library.

-100%

200%

500%

800%

1100%

4B 64B 2KB 16KB 256KB 1MB

O
ve

rh
ea

d 
(%

)

Message Size

Swarm-Docker Calico-Docker
Antrea-Docker CryptMPI-Docker
Calico-Singularity Antrea-Singularity

Figure 2: Overheads of encrypted all-gather.

D. Application benchmarks

We conducted experiments using the BT, CG, LU, MG,
SP, and FT benchmarks in the NAS parallel benchmarks [8].
For BT, CG, LU, MG, and SP, the Class D size is used. For
FT, we use the Class C size (Class D FT caused memory
problem in our experiments). Among these benchmarks,
BT, CG, LU, MG and SP are dominated by point-to-point
communications and FT is dominated by the collective all-
to-all communication. We report the results for experiments
that were carried out on 8 compute nodes and 64 MPI ranks.

Table IV presents the results on Docker clusters (N =
8 nodes, p = 64 ranks). Comparing the second column
(unencrypted MPI over bare metal) and the third column
(unencrypted MPI over Docker cluster with Docker Swarm),
we can see that for BT, CG, LU, MG, and SP the overheads
for running in the Docker environment are small, ranging
from 1.3% for LU to 5.1% for BT. This confirms the
conclusions from other studies [5], [6] that running HPC
applications in the container environment may not introduce
significant overheads. For FT, whose total time is dominated

the all-to-all, the overheads is large (91.7%). As showed
earlier, the container execution can introduce large overheads
for unencrypted collective communications.

The fourth and fifth columns show the results when en-
crypted communication is turned on with Docker Swarm and
Kubernetes Antrea, respectively. As can be seen from the ta-
ble, Docker Swarm performs slightly better than Kubernetes
Antrea for all but LU. With encrypted communication, both
Docker Swarm and Antrea introduce very large overheads
for all of the benchmarks. This is surprising since without
encryption, the communication time only accounts for a
fraction of the total application time for all applications
except FT and since running on the container environment
does not introduce significant overheads. Even for such
applications with significant computation, the overheads for
using encrypted communication can be as high as more than
200% (e.g LU on Docker with Kubernetes Antrea). In the
experiments, across all application benchmarks, encrypted
communication significantly increases total application time
for both Docker and Singularity with different container
orchestration schemes. This shows how much impact these
software-based encrypted communication scheme can have
on MPI applications. For FT, the overheads observed is very
high, but similar to those in the micro-benchmark results.
This is understandable since the FT is dominated by the all-
to-all operation. CryptMPI performs much better for these
benchmarks than the container built-in schemes although we
also observe significant overheads with CryptMPI except
for FT. With CryptMPI, the overheads introduced depend
on the message size for point-to-point communications: for
small messages, the overhead is high; for large messages, the
overhead is low. The overall application total time aggregates
the time for communicating messages of different sizes in
the application, showing the overall performance.

Table IV: Execution times in seconds for NAS bench-
marks o n Docker clusters (p = 64 and N = 8)

Unencr.
Bare
Metal

Unencr.
Docker
Swarm

Encrypted
Docker
Swarm

Encrypted
K8s Docker

Antrea

CryptMPI
Docker
Swarm

BT 3.13E2 3.29E2 5.45E2 6.12E2 3.40E2
CG 1.52E2 1.56E2 3.42E2 4.85E2 3.06E2
LU 2.22E2 2.25E2 3.60E2 3.48E2 2.67E2
MG 2.25E1 2.31E1 5.96E1 6.08E1 4.04E1
SP 2.77E2 2.88E2 6.67E2 7.74E2 3.14E2
FT 1.07E1 2.05E1 6.39E1 6.82E1 6.49E0

Figure 3 summarizes the encrypted communication over-
heads for the NAS parallel benchmarks. CryptMPI consis-
tently out-performs all other schemes. Among the container
built-in schemes, there is not one that performs the best
in term of overheads. The applications workload affects
the overheads. However, we note that overheads in this
figure are with respect to the corresponding unencrypted
baseline. Because the baseline for different settings performs
differently, the overheads may not show the whole picture.



If we look at the absolute application total time, we can
see that overall Docker Swarm has the highest performance
among the container built-in schemes: it performs the best
for all benchmarks except LU.

-100%

0%

100%

200%

300%

BT CG LU MG SP FT

O
ve

rh
ea

d 
(%

)

Benchmarks

Swarm-Docker Calico-Docker
Antrea-Docker CryptMPI-Docker
Calico-Singularity Antrea-Singularity

Figure 3: Overheads of encrypted communication for the
NAS parallel benchmarks running on systems different
settings.

IV. CONCLUSION

We evaluate the performance of encrypted communication
for MPI applications using micro-benchmarks and applica-
tion benchmarks. Our results indicate that the current con-
tainer built-in encrypted communication schemes including
Docker Swarm, Kubernetes Antrea and Calico, all incur very
high overheads on MPI applications. On the other hand,
an encrypted MPI library, CryptMPI, achieves much better
performance. Given the large performance gap between the
system built-in schemes and the library based approach, we
believe that it would be beneficial to examine whether it is
possible to incorporate some of the techniques used in the
library based approach into the systems.

ACKNOWLEDGMENT

We thank Prof. Viet Tung Hoang at Florida State Univer-
sity for extensive discussions on this research. This material
is based upon work supported by the National Science
Foundation under Grants CICI-1738912, CRI-1822737, and
SHF-2007827. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation. This work used the Extreme
Science and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation grant
number ACI-1548562. This work used the XSEDE Bridges
resource at the Pittsburgh Supercomputing Center (PSC)
through allocations ECS190004 and CCR200042. This work
also used the Bridges-2 resource at Pittsburgh Supercom-
puting Center (PSC) through allocation CIS230062 from
the Advanced Cyberinfrastructure Coordination Ecosystem:

Services & Support (ACCESS) program, which is supported
by National Science Foundation grants #2138259,#2138286,
#2138307, #2137603, and #2138296.

REFERENCES

[1] Mellanox innova ipsec adapter card documentation.
https://network.nvidia.com/related-docs/prod_adapter_cards/
PB_Innova_IPsec4_Lx_EN_Card.pdf, accessed Apr 1, 2022.

[2] Dirk Merkel et al. Docker: lightweight linux containers
for consistent development and deployment. Linux Journal,
239(2):2, 2014.

[3] Antrea. https://antrea.io/, accessed Aug 9, 2022.
[4] Calico. https://projectcalico.docs.tigera.io/, accessed Aug 9,

2022.
[5] VÃŇctor Sande Veiga, Manuel Simon, Abdulrahman Azab,

Carlos Fernandez, Giuseppa Muscianisi, Giuseppe Fiameni,
and Simone Marocchi. Evaluation and benchmarking of
singularity mpi containers on eu research e-infrastructure. In
2019 IEEE/ACM International Workshop on Containers and
New Orchestration Paradigms for Isolated Environments in
HPC (CANOPIE-HPC), pages 1–10, 2019.

[6] Tomasz Kononowicz and Pawel Czarnul. Performance as-
sessment of using docker for selected mpi applications in a
parallel environment based on commodity hardware. Applied
Sciences, 12(16), 2022.

[7] DK Panda. OSU micro-benchmark suite, 2011.
[8] David Bailey, Tim Harris, William Saphir, Rob Van Der Wi-

jngaart, Alex Woo, and Maurice Yarrow. The nas parallel
benchmarks 2.0. Technical report, Technical Report NAS-
95-020, NASA Ames Research Center, 1995.

[9] Abu Naser, Mohsen Gavahi, Cong Wu, Viet Tung Hoang, Zhi
Wang, and Xin Yuan. An empirical study of cryptographic
libraries for mpi communications. In 2019 IEEE International
Conference on Cluster Computing (CLUSTER), pages 1–11,
2019.

[10] Abu Naser, Cong Wu, Mehran Sadeghi Lahijani, Mohsen
Gavahi, Viet Tung Hoang, Zhi Wang, and Xin Yuan.
Cryptmpi: A fast encrypted mpi library. arXiv preprint
arXiv:2010.06471, 2020.

[11] Singularity Container Platform. https://sylabs.io/guides/3.5/
userguide/introduction.html, accessed Mar 31, 2022.

[12] David Bernstein. Containers and cloud: From lxc to docker
to kubernetes. IEEE cloud computing, 1(3):81–84, 2014.

[13] Naganand Doraswamy and Dan Harkins. IPSec: the new
security standard for the Internet, intranets, and virtual
private networks. Prentice Hall Professional, 2003.

[14] Ubaid Abbasi, El Houssine Bourhim, Mouhamad Dieye, and
Halima Elbiaze. A performance comparison of container
networking alternatives. IEEE Network, 33(4):178–185, 2019.

[15] Mehran Sadeghi Lahijani, Abu Naser, Cong Wu, Mohsen
Gavahi, Viet Tung Hoang, Zhi Wang, and Xin Yuan. Efficient
algorithms for encrypted all-gather operation. In 2021 IEEE
International Parallel and Distributed Processing Symposium
(IPDPS), pages 372–381, 2021.

[16] Mohsen Gavahi, Abu Naser, Cong Wu, Mehran Sadeghi
Lahijani, Zhi Wang, and Xin Yuan. Encrypted all-reduce on
multi-core clusters. In 2021 IEEE International Performance,
Computing, and Communications Conference (IPCCC), pages
1–7, 2021.

[17] SingularityCRI. https://docs.sylabs.io/guides/cri/1.0/user-
guide/index.html, accessed May 9, 2023.

[18] BoringSSL. https://boringssl.googlesource.com/boringssl,
2018.


