
Nested and Composite Classes

Lecture 14
COP 3252 Summer 2017

May 30, 2017



Nested Classes

I The Java programming language allows you to define a class
within another class. Such a class is called a nested class.

I Nested classes are divided into two categories: static and
non-static.

I Nested classes that are declared static are called static nested
classes. Non-static nested classes are called inner classes.

class OuterClass {
...

static class StaticNestedClass {
...

}
class InnerClass {

...

}
}



Access

I A nested class is a member of its enclosing class.

I Non-static nested classes (inner classes) have access to other
members of the enclosing class, even if they are declared
private.

I Static nested classes do not have access to other members of
the enclosing class.

I As a member of the OuterClass, a nested class can be
declared private, public, protected, or package private. (Outer
classes can only be declared public or package private.)

I Why Use Nested Classes?
I It is a way of logically grouping classes that are only used in

one place
I It increases encapsulation
I It can lead to more readable and maintainable code



Static Nested Classes

I A static nested class is behaviorally a top-level class that has
been nested in another top-level class for packaging
convenience.

I A static nested class is associated with its outer class. cannot
refer directly to instance variables or methods defined in its
enclosing class: it can use them only through an object
reference

I Static nested classes are accessed using the enclosing class
name:
OuterClass.StaticNestedClass

I For example, to create an object for the static nested class,
use this syntax:
OuterClass.StaticNestedClass nestedObject =

new OuterClass.StaticNestedClass();



Inner Classes

I An inner class is associated with an instance of its enclosing
class and has direct access to that object’s methods and fields.

I Also, because an inner class is associated with an instance, it
cannot define any static members itself.

I To instantiate an inner class, you must first instantiate the
outer class. Then, create the inner object within the outer
object with this syntax:
OuterClass.InnerClass innerObject =

outerObject.new InnerClass();



Composition of Classes

I Composition is preferred over inheritance when there is a
”has-a” relationship between the two classes.

I Java composition is achieved by using instance variables that
refers to other objects.

I Using composition, one can control the visibility of other
object to client classes and reuse only what’s needed.


