
Adaptive Call-site Sensitive Control
Flow Integrity

Mustakimur Khandaker, Abu Naser, Wenqing Liu, Zhi Wang, Yajin Zhou †, Yueqiang Cheng ‡

Dept. of Computer Science, Florida State University, Tallahassee, USA
† School of Computer Science, Zhejiang University, Hangzhou, China

‡ Baidu X-lab, Sunnyvale, USA

Control Flow Integrity
Control Flow Integrity (CFI) is a defense mechanism against control-flow hijacking
that employs inline reference monitor to enforce the run-time control flow of a
process must follow the statically computed control-flow graph (CFG).

CFI consists of:

● CFI Policy

● Inline Reference Monitor
● CFG

local variable

arguments
...

return address

canary

old frame pointers

void (*fnptr)()

char buf[10]

caller

callee

2

CFI Policy
● Context-insensitive (CI-) CFI: CFI policy without additional information
● Context-sensitive (CS-) CFI: CFI policy with past execution history

○ e.g., path sensitivity

3

CFI Metrics

● Equivalence Class (EC): A group of targets that CFI cannot distinguish.
● Largest EC (LC): Largest allowed targets among all EC’s.

4

CI-CFI
of EC = 1 (D)
EC Size = 2 (D->E,F)
LC = 2 (D->E,F)

CS-CFI
of EC = 2 ({B,D},{C,D})
EC Size = 1 ({B,D}->E, {C,D}->F)
LC = 1 ({B,D}->E, {C,D}->F)

Quantifying CFI
To quantify security guarantee of CFI, we propose:

Benefits:

● QS
CFI

 has a theoretical limit of 1, i.e., every target can be individually
distinguished and validated.

● Applicable to both context-sensitive and insensitive CFI systems
○ AVG

EC
 avoids the false impression of improvements because context-sensitive CFI can

exponentially increase the # of ECs

5

Call-site Sensitive CFI
At runtime, combine backward edge information

(return addresses) with intended target at indirect

forward edge call-point:

● By accessing call stack (protected by shadow

stack, Intel CET etc.).

● Validates multi-level call-sites against a

pre-computed CFG.

● Benefits:

○ Strict CFI policy

○ No extra memory

○ No specialized hardware required

○ Whole-program protection

6

1. {L29,L5} => on_admin
2. {L31,L5} => on_failure

Challenges
● Context-sensitivity is expensive.

○ Runtime reference monitor:

■ Complex verification method.

■ Extra instrumentation required for integrity.

● Context-sensitivity is complicated.
○ Unavailable scalable static points-to analysis to compute CFG:

■ Precision.

■ Completeness.

7

CFI-LB: Control Flow Integrity with Look Back
● Strong CFI Policy:

○ Call-site sensitivity.

○ SafeStack for secure call stack.

● Fast and Secure CFI Enforcement:
○ Adaptive call-site depth.

○ Hash-table based set membership test.

○ Intel TSX for guaranteed atomicity.

● Complete and precise CFG:
○ Multi-scope CFG

■ Dynamic-colcolic CFG (CS-CFI)

■ Static CFG (CI-CFG)

○ Localized concolic execution

8

Adaptive Call-site Sensitivity
● Individual call-point has independent

level of call-site sensitivity.

○ TABLE I: 149 call-points have

best security guarantee without

any context.

○ TABLE II: LC of 403.gcc is

call-site insensitive.

Sizes Call-site(0) Call-site(1) Call-site(2) Call-site(3)

1 149 674 2372 5423

2 27 54 223 667

3 10 18 48 172

4 7 17 35 70

5-10 20 26 56 93

11-20 4 4 28 37

21-40 2 1 0 0

54 1 1 1 1

Total 220 795 2763 6463

Call-site
Depth

Max. Target
Set Size

of Indirect
Calls # of ECs Avg. EC

Size

0 54 161 161 1.48

1 20 23 262 1.37

2 17 36 787 1.5

Total 220 1210 1.47
TABLE I: EC distribution over sizes of the target sets (403.gcc)

TABLE II: Distribution of adaptive call-site
sensitivity.(403.gcc)

9

Atomicity of Reference Monitor
● Complex monitoring system may cause internal states spill to stack.
● In the multi-threaded programming environment, race condition is critical.
● Solution:

○ Encapsulates reference monitor with Intel TSX hardware transactional memory protection.

■ CFI-LB uses restricted transactional memory (RTM) interface.

○ If a race condition is detected, CFI-LB retries the execution.

■ Transaction could fail without race condition because of cache conflicts

10

Multi-scope CFG
● Why?

○ Unavailability of scalable context-sensitive

static points-to analysis.

○ Completeness is crucial.

○ Imprecision is unacceptable.

● Dynamic CS-CFG

○ Seed input derived.

● Concolic CS-CFG

○ Localized concolic execution.

● Static CI-CFG

○ Act as a fail-safe for dynamic-concolic CFG.

○ In release binary, a control transfer

validated by static CFG will be logged.

11

Dynamic CFG
● Due to limited seed input:

○ Dynamic execution can cover limited number of paths.

● Possible solution:
○ Symbolic execution based complete path exploration.

○ Issues with symbolic execution:

■ Constraint solver is slow.

■ Path explosion problem.

12

Localized Concolic Execution
● For n call-site sensitivity:

○ Coverage starts from every function in n call-site depth

for each indirect call-point.

○ Localized code coverage: all-possible path reachable to

an indirect call-point.

○ Intuition: Call-site sensitive code pointers must have

assigned within localized coverage.

● Reconstruct memory layout:

○ Utilize concrete execution memory dump (Concolic).

○ Symbolize memories (except references).

■ Global variables.

■ Arguments at coverage entry points.

■ I/O memories in libc function.

● Benefits:

○ Localized all-possible path coverage (Scalable).
○ Concolic data-driven path exploration (Precision).

13

Evaluation
We separate our evaluation:

● Effectiveness
○ Call-site sensitivity

○ Localized concolic CFG

● Performance
● Exploitation

14

Call-site Sensitive as Context

15

Deeper context (call-site depth) provide better security.

Effectiveness of CFI-LB
Benchmark Max Level # of Indirect Calls AVGEC

Final
AVGEC

LC QSCFI-LB /QSCFI(0)

400.perlbench 3 62/8/3/7 1.02/1.0/1.21/2.77 2.28 115 1/2.4
401.bzip2 0 12 1 1 1 1
403.gcc 2 161/23/36 1.48/1.37/1.50 1.47 54 1/1.84

445.gobmk 1 36/15/12 16.86/9.44/12.76 12.86 427 1/2.4
456.hmmer 0 9 1 1 1 1
464.h264ref 2 68/2/4/1 1.5/1.05/1.15/1.25 1.31 2 1/6.4
471.omnetpp 2 226/2/8/3 1.81/1.0/1.04/1.7 1.44 168 1/1.45

483.xalancbmk 2 1960/25/30/48 1.06/1.12/1.20/1.71 1.14 26 1/1.52
444.namd 0 12 1 1 1 1
447.dealII 2 100/3/4/1 1.04/1.0/1.0/1.11 1.03 2 1/1.07
450.soplex 0 56 1 1 1 1
453.povray 2 40/3/9 1.6/4.2/2.12 2.12 9 1/1.06

NGinx 3 94/18/0/11 5.54/1.06/0.0/4.91 3.73 62 1/3.3

TABLE III: Effectiveness of adaptive call-site sensitivity. The table shows the max call-site level, the number of indirect calls in each level, and
for each level, the number of ECs and the average EC size. The last column shows the improvement of CFI-LB over context-insensitive CFI.

16

Effectiveness of Localized Concolic Execution
Benchmark static-CFG dyn-CFG con-CFG static-CFG\(dyn-CFG’ ∪

con-CFG’) dyn-CFG \ con-CFG con-CFG \ dyn-CFG

400.perlbench 879 1374 1387 41(4.66%) 0(0%) 13(0.94%)
401.bzip2 20 12 16 4(20%) 0(0%) 4(25%)
403.gcc 2198 3831 4125 94(4.28%) 14(0.37%) 308(7.47%)
445.gobmk 957 1882 1971 79(8.25%) 23(1.22%) 112(5.68%)
456.hmmer 52 47 59 6(11.54%) 0(0%) 12(20.34%)
458.sjeng 7 6 7 0(0%) 0(0%) 1(14.29%)
464.h264ref 711 262 479 206 (28.97%) 12(4.58%) 229(47.81%)

TABLE IV: Comparing static, dynamic, and concolic CFGs for the Spec CPU2006 benchmarks. Column 2 to 4 show the total number of entries
in these CFGs, respectively. Note that number of static-CFG is not directly comparable to these of dyn-CFG and con-CFG because the latter

two CFGs have contexts (hence
more entries).

17

Performance Overhead
● Intel core-i7 6700 processor (skylake) with a base frequency of 3.4GHz and

16GB of memory
● Spec CPU2006 benchmark and NGinx

○ 2.7% for the forward-edge protection and 4.8% for the full protection.

Fig: Performance overhead, Average_ex shows the average overhead excluding the three benchmarks that have no
overhead.

18

Exploitation Example
● CVE-2014-1912 (python-2.7.6)
● Root cause: missing check of the buffer size and the receive size in Python’s

socket module

● CFI-LB at exploitable call-point:
○ Use call-site depth 3
○ Allowed 5 valid targets
○ Avg. EC size: 1.0

● CFI-LB can detect any control hijack at this
point

19

Discussion
● Scalable context-sensitive static

points-to analysis
○ Unavailable before mid 2018.

○ SUPA has open-sourced in july, 2018.

○ SUPA is based on SVF. It is both scalable

and context-,flow- and field-sensitive.

○ Though, it fails to solve large number of

pointers and returns imprecise points-to

result.

● The offline log can be automated to
verify and update CFG.

○ We keep it as a future work.

20

Benchmarks Out of Budget Empty Points-to Set

of
ICTs

SUPA Type # of ICTs Type

400.perlbench 54 639 349 2 7

403.gcc 46 544 218 20 107

445.gobmk 22 1645 1637 1 4

447.dealII 0 - - 23 37

450.soplex 0 - - 157 11

471.omnetpp 37 143 44 67 21

483.xalancbmk 0 - - 349 29

TABLE V: Failed cases of SUPA and the improvements of our
type-based matching. Column 3, 4, and 6 show the largest EC sizes

for SUPA and the type-based matching. SUPA works for all other
benchmarks.

Conclusion
● Call-site sensitivity as context-sensitive CFI
● CFI-LB:

○ Fast and secure inline reference monitor
○ Complete and precise CFG

● Performance overhead:
○ 2.7% for the forward-edge protection
○ 4.8% for the full protection.

● Open-source: https://github.com/mustakcsecuet/CFI-LB

21

https://github.com/mustakcsecuet/CFI-LB

Q/A
Thank you

22

Protected Call Stack Solutions
A number of solutions are available and in progress:

● SafeStack
○ separates return addresses and others safe data into a separate safe stack.

○ published in OSDI’14 and adopted by LLVM in 2015 (still active in service, clang-9.0).

● ShadowCallStack
○ stores only the array of return addresses (contrast to SafeStack).

○ available for aarch64 in LLVM (from clang-7.0).

● Intel Control-flow Enforcement Technology (CET)
○ would add native support to use a shadow stack to store/check return addresses at call/return

time.

○ would not suffer from race conditions and would not incur the overhead of function

instrumentation.

○ recent update is on May 2019. (active research) 23

Path Sensitivity Pitfalls
Two most popular system use for runtime path tracing are:
● Intel Last Branch Record (LBR)

○ record the most recent 16/32 branches.

○ requires kernel modification and runtime access.

○ applied in PathArmor.

■ limited to paths before seven sensitive syscalls.

● Intel Processor Tracing (PT)
○ introduce for offline debug purpose

○ record whole execution path history but in compressed packets

○ requires kernel module for expensive decompression

○ applied in PittyPat, GRIFFIN, etc:

■ entire execution leading to the sensitive syscalls

○ also applied in µCFI:

■ reports data loss problem from Intel PT

■ for gcc, dealII, povray, omnetpp and xalancbmk spec benchmark 24

Static Points-to Analysis Pitfalls
A technical pitfalls on SVF/SUPA:

25

class A {
public:
 int f();
 int (A::*x)();
};

int A::f() { return 1; }

void ctx() {
 A a;
 a.x = &A::f;
 (a.*(a.x))();
}

##<> Source Loc:

Ptr 4295 PointsTo: {empty}

A conceptual pitfalls on SVF/SUPA:

fnptr instArr[] = {fn_add, fn_mul, fn_mov};

void buildInst(int i){

 instArr[i]();

}

void createAdd(){

 buildInst(0);

}

void createMov(){

 buildInst(2);

}

##<> Source Loc: (no context found)

Ptr 4056 PointsTo: {fn_addr, fn_mul, fn_mov}

Improvements over Small Set Seeds
Benchmark dyn-CFG-r dyn-CFG-t con-CFG-t dyn-CFG-r \

dyn-CFG-t dyn-CFG-r \ con-CFG-t Discovered

400.perlbench 1374 449 1051 925 323(23.51%) 602
401.bzip2 12 12 16 0 0(0%) 0
403.gcc 3831 2196 3929 1635 53(1.38%) 1582
445.gobmk 1882 1102 1833 780 49(2.60%) 731
456.hmmer 47 3 58 44 1(2.13%) 43
458.sjeng 6 6 7 0 0(0%) 0
464.h2564ref 262 240 473 220 12(4.58%) 4

TABLE VI: Comparing concolic and dynamic CFGs. dyn/con-CFG-t is derived from the small test inputs;
dyn/con-CFG-r is derived from the large reference inputs. Our localized concolic execution can discover most of

the control transfers in the dyn-CFG-r using only the small inputs.

26

