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Abstract— Several variants of Linear Discriminant Analysis
(LDA) have been investigated to address the vanishing of
the within-class scatter under projection to a low-dimensional
subspace in LDA. However, some of these proposals are ad hoc
and some others do not address the problem of generalization
to new data. Meanwhile, even though LDA is preferred in
many application of dimension reduction, it does not always
outperform Principal Component Analysis (PCA). In order
to optimize discrimination performance in a more generative
way, a hybrid dimension reduction model combining PCA and
LDA is proposed in this paper. We also present a dimension
reduction algorithm correspondingly and illustrate the method
with several experiments. Our results have shown that the
hybrid model outperform PCA, LDA and the combination of
them in two separate stages.

I. INTRODUCTION

INFOMAX principle [1][2] tries to explain neural net-
works as mapping the input (sensory information) to

a more efficient output (internal representation). In this
mapping, the input and the output are considered as two sets
of variables (or dimensions). The redundancy in the input
variable set is reduced due to a constrained optimization on
mutual information between the inputs and outputs. Clearly,
neural networks for recognition and other higher level tasks
require not only expressive information for structure repre-
sentation but also most discriminative information.

Dimension reduction is widely used for applications such
as face recognition[3][4][5] and text classification[6]. It is
similar to how neural networks work. The resultant subspace
gives an effective discriminative representation of the original
space in a more efficient way. Linear Discriminant Analysis
(LDA) is a classical supervised dimension reduction tech-
nique. It is designed to optimally cluster different classes of
objects under a projection to a low dimensional subspace
[7][8]. More precisely, given m-dimensional feature vectors
representing different classes of objects, one uses labeled
training data to learn a p-dimensional subspace, p < m fixed,
for which the ratio R of the total between-class and within-
class scatter of the projected data is maximized. To simplify
the discussion, we consider the case p = 1, that is, reduction
to a 1-dimensional subspace.

In many applications, the dimension m of the original
feature vectors is rather large as compared to the number
T of training samples. This is often the case, for example,
when the feature vectors are images and m is the number

Nan Zhao and Xiuwen Liu are with the Department of Computer Science,
Florida State University, Tallahassee, Florida 32306, USA (email: {nzhao,
liux}@cs.fsu.edu).

Washington Mio is with the Department of Mathematics, Florida State
University, Tallahassee, Florida 32306, USA (email: mio@math.fsu.edu).

This research was supported in part by NSF grant DMS-0713012 and
NIH Roadmap for Medical Research grant U54 RR021813.

of pixels. In such cases, it is almost always possible to find
a 1-dimensional projection that collapses each cluster in the
training set to a single point, making the total within-class
scatter vanish, or equivalently, making the ratio R become
infinite. Although the objects in the training set get clustered
perfectly under such a projection, the discrimination of new
test data is generally very poor. This shortcoming can be
traced to small sample size, that is, T � m. To prevent the
vanishing of the within-class scatter, the LDA cost function
has been regularized in [9] by adding a small number ε > 0
to the denominator. However, this does not address the key
issue of poor generalization. Two-stage approaches to LDA
improve the situation somewhat [10][11]. On a first step,
one performs a preliminary dimension reduction to a k-
dimensional subspace using Principal Component Analysis
(PCA) and then applies LDA to the reduced k-dimensional
data. Experimental results show noticeable improvement on
generalization to new test data with this strategy. Note,
however, that the choice of k is ad hoc and there is no clear
learning model underlying this approach. Other variants of
LDA have been proposed in [3][6] to address the vanishing
of the within-class scatter.

The goal of this paper is to develop a discriminative
dimension reduction model for the choice of a 1-dimensional
subspace that yields an optimal balance between general-
ization and class discrimination to new data. We take the
viewpoint that what enables a two-stage type approach to
improve the generalization to new data is that PCA is
designed to preserve, as much as possible, the geometry and
clustering patterns observed in the original set of feature
vectors. As such, discrimination learned with LDA on the
reduced representation, which is not subject to the small-
sample-size problem, better extrapolates to test data. In fact,
a combination between PCA and LDA is reasonable for
classification rather than pure LDA in that LDA is not always
superior to PCA for classification [12]. However, since PCA
may lose some potential discriminative information in the
ignored principle components while involving useless infor-
mation for classification in the first few principle components
(like variations due to illumination and viewing direction
in face recognition), PCA and LDA should be combined
in a more intrinsic way rather than in two separate stages.
Following this philosophy, we propose a hybrid model guided
by a cost function that is a linear interpolation of the PCA
and regularized LDA cost functions. This gives a family
of models indexed by an interpolation parameter t, which
takes values on the interval [0, 1], with t = 0 corresponding
to PCA and t = 1 to regularized LDA. We then use
cross-validation data to choose a value of t that maximizes
classification performance. Therefore, the maximization of



the cost function is modeled as an optimization problem
concerning t in this linear interpolation.

The paper is organized as follows. In Section II, we present
the hybrid PCA-LDA model for dimension reduction. The
optimization problem that arises in the estimation of the
optimal subspace is discussed in Section III, including an
algorithm to solve the problem. Section IV illustrates the
methodology with several experiments. Section V gives a
brief summary and discussion on the text.

II. THE HYBRID PCA-LDA MODEL

The problem using this model can be simply described as
following: given a set of labeled training data from different
classes and another set of unlabeled testing data from the
same group of classes, identify each testing data relying the
new model. Both sets consist of feature vectors in some high-
dimensional Euclidean space Rm representing K different
classes of objects. In the training set, the feature vectors
representing the ith class are denoted xij ∈ Rm, with
1 6 i 6 K and 1 6 j 6 ni, where ni is the number of
samples in the ith class. Thus, the total number of objects in
the training set is N = n1 + . . . + nK .

The most straightforward method for such problem is
applying a nearest neighbor rule on the data space, trying to
identify each testing data through assigning to it the label
of the training data with the closest distance in the data
space. However, the drawbacks are that the computational
cost in time and amount of storage required are both very
expensive, especially when the data dimension m is high.
Therefore, it is natural to apply a dimension reduction model
on both data sets and a nearest neighbor classifier is then used
in the resultant lower-dimensional feature space. As widely
used in the field of dimension reduction, PCA was involved
in many applications [4] for such purpose. PCA is a linear
projection from an original m-dimensional space to a lower
p-dimensional space (m > p) relying on maximization of the
total scatter matrix of projected samples. Specifically, given
a training data set as defined above, the new feature vectors
yij ∈ Rp after such projection can be defined as following:

yij = MT
pcaxij 1 6 i 6 K and 1 6 j 6 ni (1)

where Mpca ∈ Rm×p is an orthonormal matrix.
Let

µi =
1
ni

ni∑
j=1

xij (2)

be the sample mean of the ith class and

µ =
1
N

K∑
i=1

ni∑
j=1

xij (3)

the mean of the entire training set. Then, the scatter matrix
S of all the training data is defined as (cf. [7]):

S =
K∑

i=1

ni∑
j=1

(xij − µ)(xij − µ)T . (4)

Thus, after applying the linear projection Mpca, the scatter
matrix of the reduced feature vectors is MT

pcaSMpca. The de-
terminant of this projected total scatter matrix is maximized
in PCA so as to optimize the transformation matrix Mpca:

Mpca = a rg max
Mpca

|MT
pcaSMpca|

= [m1m2...mp]
(5)

where {mi|i = 1, 2, ..., p} correspond to the p largest
eigenvalues (p 6 K). However, PCA does not only maximize
the between-class scatter but also the within-class scatter.
Thus, in the first few principle components, some unwanted
information for classification may be preserved while useful
information for discrimination may be lost [5].

As labels are known for the training data set, it is
reasonable to build class specific model for discriminative
dimension reduction on the feature space. A well defined
class specific model is LDA, such as Fisher’s Linear Dis-
criminant (FLD) [18]. It tries to perform more reliable
dimension reduction via linear mapping and still maintains
the linear separability among different classes. After applying
this linear mapping Mlda, the between-class scatter and
the within-class scatter of the transformed feature vectors
are MT

ldaSBMlda and MT
ldaSW Mlda accordingly. Instead of

maximizing the determinant of the total scatter matrix in
PCA, a ratio of the between-class scatter matrix and the
within-class scatter matrix is maximized. The between-class
scatter matrix SB and the within-class scatter matrix SW are
formally defined as following:

(i) Si =
∑ni

j=1(xij − µi)(xij − µi)T , the scatter of the ith
class.

(ii) SW =
∑K

i=1 Si, the within-class scatter.

(iii) SB =
∑K

i=1 ni(µi−µ)(µi−µ)T , the total between-class
scatter.

If SW is non-singular, Mlda is the orthonormal ma-
trix maximizing the ratio between the determinant of the
between-class scatter and the determinant of the within-class
scatter:

Mlda = a rg max
Mlda

|MT
ldaSBMlda|

|MT
ldaSW Mlda|

= [m1m2...mp]
(6)

where {mi|i = 1, 2, ..., p} correspond to the p largest
eigenvalues (p 6 K).

In order to lower the computational cost via PCA while
preserve the linear separability among different classes by
LDA, a 2-stage dimension reduction model was proposed
[10]: the original image space is projected to a lower di-
mensional feature space (N-K) via PCA in the first stage
and then apply LDA to reduce the dimension to even lower
dimensional space (K-1) in the second stage. In this case, the
transformation matrix M for dimension reduction is defined
as:



MT = MT
ldaMT

pca (7)

where

Mpca = a rg max
M

|MT SM |

Mlda = a rg max
M

|MT MT
pcaSBMpcaM |

|MT MT
pcaSW MpcaM |

(8)

The problem of the two-stage model is that it cannot
avoid loss of discriminating information while involving
unwanted information for classification in the first stage
(PCA). Therefore, the first few principle components may
not be suitable for building a discriminative model in the
second stage (LDA). To overcome this problem, we propose
an alternative to the dimension reduction model preserving
both low computational cost and linear separability. This
model for dimension reduction is called hybrid PCA-LDA
model. Instead of separating PCA and LDA as two stages,
we combine them in a linear combination. To clarify our
idea in this paper, here we only discuss the case of reducing
the feature space to 1-dimension subspace. A 1-dimensional
subspace will be represented by a unit vector e and the usual
dot product of vectors u, v ∈ Rm will be written as 〈u, v〉.
The cost functions associated with PCA [14] and regularized
LDA [9] are

H1(e) = 〈e, Se〉 and

H2(e) =
〈e, SBe〉

〈e, (SW + εI)e〉
=

〈e, SBe〉
〈e, SW e〉+ ε

,
(9)

respectively, where ε > 0 is a small number that prevents the
occurrence of vanishing denominators. For each t, 0 6 t 6 1,
we propose the linear interpolation

Ft(e) =
1− t

2
H1(e) +

t

2
H2(e)

=
1− t

2
〈e, Se〉+

t

2
〈e, SBe〉

〈e, SW e〉+ ε

(10)

of the cost functions for PCA and regularized LDA. The goal
is to find a unit vector et ∈ Rn that maximize the proposed
cost function Ft(e):

et = arg min
et

Ft(e) (11)

The main computational task is to calculate et. Once et

is known, we choose t so that the classification perfor-
mance, with the nearest-neighbor classifier applied to cross-
validation data, is optimized under projection to the subspace
spanned by et.

III. MAXIMIZATION OF THE COST FUNCTION

As the objective is to maximize Ft under the constraint
‖e‖2 = 1, the computational task on et can be modeled
as a Lagrange optimization problem. First we construct the
Lagrange function

L(eλ) = Ft(e) + λ(‖e‖2 − 1) (12)

where λ is a scalar called Lagrange multiplier. This con-
strained optimization problem can be converted into an
unconstrained problem via taking the derivative on both side:

∂L(e, λ)
∂e

=
∂Ft(e)

∂e
+ λ

∂(‖e‖2 − 1)
∂e

= 0 (13)

A calculation shows that the gradient of Ft is

∇Ft(e) = (1− t)Se +
t

〈e, SW e〉+ ε
SBe

− t
〈e, SBe〉

(〈e, SW e〉+ ε)2
SW e .

(14)

Therefore, our goal is to find e such that

∇Ft(e) = λe. (15)

In other words, to make ∇Ft(e) parallel to e. Using the
fact that S is positive semi-definite, it follows from (14) that
〈∇Ft(e), e〉 > 0. By (15), λ = 〈∇Ft(e), e〉, so that λ must
be non-negative. If λ > 0, we can normalize both sides of
(15), which then becomes

∇Ft(e)
‖∇Ft(e)‖

= e . (16)

If we let T (e) = ∇Ft(e)/‖∇Ft(e)‖, Equation 16 translates
to finding a fixed point of the mapping T , which maps unit
vectors to unit vectors. The problem with this argument is
that λ may vanish. This can be corrected as follows. Add
a positive multiple of e to both sides of (15) and then
normalize. That is, change the mapping T to

T (e) =
αe +∇Ft(e)
‖αe +∇Ft(e)‖

, (17)

with α > 0. A fixed point of this modified version of T
gives a unit vector e where the constrained gradient of Ft

vanishes.

Fig. 1. A sample convergence of et. The vertical axis shows the difference
between current normalized et and last normalized et in each iteration.

We adopt an iterative scheme to search for a fixed point
of T , a procedure that closely resembles constrained gradient
descent. Initialize the search arbitrarily. Then, use the update
en+1 = T (en). A sample process of obtaining the conver-
gence is shown in Fig. 1. Note that, for t = 0, this iterative



Fig. 2. Sample images of 2 individuals from the AT&T Database of Faces. Images in each row was taken from an individual.

procedure is just the power method to find the first principal
direction of S. For t = 1, this gives an alternative approach
to regularized LDA. A pseudo-code for this algorithm is give
in Algorithm 1.

Algorithm 1: Hybrid PCA-LDA algorithm

Input: Date matrix A

Output: Reduced data matrix AL

1. begin construct the scatter matrices SW , SB and S in (ii),
(iii) and (4).

2. Initialize a random unit vector et ∈ Rn.

3. do apply normalization on αet +∇Ft(et) as T (e),

where ∇Ft(e) is given by (14).

4. et ← T (e).

5. until no significant change in et.

6. return AL ← Aet.

7. end

IV. EXPERIMENTAL RESULTS

A. Data Sets

In this section, we present and discuss the properties
of proposed hybrid dimension reduction model using two
different type of data sets: the facial recognition data set
from AT&T Laboratories Cambridge [16] and the UCI wine
data set [13].

In the first data set, also formally called ORL data set
of faces, it consists of 400 facial images, 10 each from 40
individuals. The original image size is 92 × 112, with 256
grey-scale value in pixel. We sub-sampled the images as
28 × 23 and the dimension of each image, as an instance,
is therefore reduced to 28× 23 = 644. All the images were
well centralized. For most of the individuals the facial images
were taken at different times and under various lighting con-
ditions but all with a homogeneous background in darkness.
The major challenge of this data set is the variation of poses,
expressions and facial details. Some individuals were both

captured with and without glasses. However, there is minor
occlusion due to the presence of glasses.

The second data set is based on a chemical analysis of
wine from the same region in Italy, but from three different
cultivars. We refer to them as types 1, 2 and 3. In each of
these 3 types of wines, 13 constituents of wine are taken
into account and each instance is thus a 13-dimensional
feature vector. The 13 variables quantify the following con-
stituents or properties of wine: alcohol, malic acid, ash,
alcalinity of ash, magnesium, total phenols, flavonoids, non-
flavonoid phenols and proanthocyanins, color intensity, hue,
OD280/OD315 of diluted wines, proline. The full data set
comprise 178 feature vectors: 59 from class 1, 71 from class
2 and 48 from class 3.

B. Choice of ε

As the proposed subspace learning model involves a
parameter ε > 0, our first experiment was designed to
provide evidence that the optimal choice of t, based on
performance on cross-validation data, is not very sensitive
to the choice of ε, so long as ε be small. In this preliminary
experiment, we used a small subset of the ORL data set,
2 individuals with 20 facial images. Each image is rescaled
into a vector with 645 dimensions (with one more dimension
indicating the label). Figure 2 shows a few samples. The
interpolation parameter t was discretized into 21 values
obtained by dividing the interval [0, 1] into 20 equal parts.
We carried out 1,000 experiments with randomized 5-fold
cross-validation for a total of 5,000 runs of the algorithm. In
that sense, the training set is randomly split into 5 disjoint
sets of equal size and the classifier is then trained 5 times.
Each time a different set is considered as a validation set
for estimating the generalization error and the other sets
combined as a training set used to adjust parameter et in
the hybrid model. The estimated performance is generated
by the mean of these 5 generalization errors. Figure 3 shows
the average classification performance as a function of t for
four different choices of the parameter ε. The graphs are
nearly the same for small values of ε, as are the values of
t where the validation performance peaks. Therefore, we fix
ε as 0.01 for the experiments below. Note that, in this case,
LDA (t = 1) does not perform well because the number of
pixels is much larger than the number of elements in the
training set, as explained above.
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Fig. 3. Classification performance for different values of the parameter
ε. The horizontal axis represents parameter t in the hybrid model (10) and
the vertical axis shows the classification performance under 5-fold cross
validation.

We carried out another face classification experiment with
two different individuals. The parameter was set to ε = 0.01
and 10,000 experiments were carried out with 5-fold cross
validation. Figure 4 shows the average performance over the
50,000 runs. The optimal value occurs near t = 0.2, showing
that optimal classification is achieved by a hybrid PCA-LDA
model.
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Fig. 4. Average performance on a subset of the AT&T Database of Faces.
The horizontal axis represents parameter t in the hybrid model (10) and
the vertical axis shows the classification performance under 5-fold cross
validation.

C. A Comparison Between the Hybrid Model and the two-
stage Model

To demonstrate the superiority of proposed hybrid PCA-
LDA model over PCA, LDA and the two-stage model,
we designed another set of experiments to compare the
performance of these models when reducing original data
space to a final 1-dimensional space. The second set of
experiments, with the UCI wine database, illustrate the fact
that even in cases where the dimension m of the feature space

is relatively small, the hybrid model can boost classification
performance obtained with either PCA or LDA alone. We
first used 59 samples of type 1 and 71 samples of type 2.
We performed 10,000 experiments with randomized 2 × 2
cross validation for a total of 40,000 runs. The parameter was
set to ε = 0.01. Figure 5(a) shows the average performance
over all runs using the hybrid model. In addition, figure 5(b)
shows the results of a similar experiment with 71 samples
of type 2 and 48 samples of type 3. Obviously, neither pure
LDA (t = 1 in Fig. 5) nor pure PCA (t = 0 in Fig. 5)
outperform the hybrid model (the peaks in Fig. 5).
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Fig. 5. Average classification performance for two different subsets of
the UCI wine database ((a) and (b) respectively) using the hybrid model.
The horizontal axis represents parameter t in the hybrid model (10) and
the vertical axis shows the classification performance under 2 × 2 cross
validation.

In contrast, figure 6 shows the performance of the two-
stage model [10]. In such model, training set is reduced to
a p-dimensional subspace in the PCA stage, where p ranges
from 1 to the number of dimensions in original data. LDA
is then applied on the p-dimensional subspace to obtain a
new subspace reserving discriminating information. As in
the experiment for our hybrid model, 59 samples of type
1 and 71 samples of type 2 are used at first and figure



6(a) shows the average performance over all runs using the
two-stage model. 10,000 experiments with ε = 0.01 and
randomized 2× 2 cross validation for a total of 40,000 runs
are performed as well. Figure 6(b) shows the results with
71 samples of type 2 and 48 samples of type 3 using the
two-stage model correspondingly. As shown in figure 5 and
6, in both cases, our hybrid model is superior to the two-
stage model concerning the classification performance. There
is an optimal solution between PCA and LDA such that
both most expressive information and most discriminating
information can be preserved. In contrast, the performance
of the 2-stage model may suffer from a large amount of
undiscriminating information inside the first few principle
components. Therefore, a hybrid model combining PCA and
LDA may be better for discriminative dimension reduction
rather than incorporating them via a two-stage system.

(a)

(b)
Fig. 6. Average classification performance for two different subsets of the
UCI wine database ((a) and (b) respectively) using the two-stage model. The
horizontal axis represents parameter p, which is the dimension reserved in
PCA stage, and the vertical axis shows the classification performance under
2× 2 cross validation.

V. SUMMARY AND DISCUSSION

We proposed a dimension reduction method that may be
interpreted as a hybrid of principal component analysis and

linear discriminant analysis. The main goal is to enhance data
discrimination that can be achieved with subspaces learned
with either PCA or LDA alone. The learning mechanism
differs from existing proposals in that it is guided by a hybrid
model and thus addresses the problem of generalization to
new data in a more direct way. In addition to the model,
we developed computational strategies to estimate optimal
subspaces. The method was illustrated with applications to
facial classification experiments and the discrimination of
different types of wine based on results of chemical analysis
of their constituents and properties.

In this paper, we only considered reduction to a 1-
dimensional subspace. This certainly limits the discrimina-
tion performance on data that exhibit more intricate cluster-
ing patterns. In future work, the model and the methodology
will be extended to subspaces of higher dimension, including
experiments to illustrate the gains that can be achieved with
subspaces of dimension greater than 1. Note that after the
low dimensional representation is learned, we can use any
classifier, including SVM and neural networks for classi-
fication and comparison. In addition, the proposed hybrid
PCA-LDA model can be considered as a special case of
generative-discriminative models for classification. Therefore
PCA can be replaced by other generative models and LDA by
other discriminative algorithms (such as optimal component
analysis [15] and optimal factor analysis [17]), leading to a
family of new models.
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