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ABSTRACT

Nano-scale imaging technologies make it possible to visual-
ize objects at nanometer resolutions. To investigate structures
and functions of interest, there is an intrinsic demand for ex-
plicit models to extract them from nano-scale data. Segmen-
tation is one of the most critical steps in processing pipelines.
However, existing segmentation methods often fail due to ex-
tremely low signal-to-noise ratio, low contrast and large data
size. In this paper we propose a new context-sensitive method
for segmenting three-dimensional volumes. As our method
efficiently narrows the search space by using robust context
cues, we achieve tractable and reliable nano-scale semantic
segmentation. We demonstrate our method on a tomogram of
microvilli spikes, for which our method is able to yield accu-
rate spike segmentation and in comparison the state-of-the-art
semantic segmentation methods fail due to their inability to
handle signal-to-noise ratio and low contrast volumes.

Index Terms— Nano-scale, context-sensitive, semantic
segmentation, microvilli, spike

1. INTRODUCTION

Nano-scale imaging technologies allow us to investigate
nano-scale structures that are very close to their native
states and potential spatial relations between them. Thus
they benefit a wide range of nano-scale studies such as bio-
chemistry, material science, and medicine [1, 2]. Generally,
nano-scale structure studies rely on several critical stages,
among which target object identification and segmentation
are of utmost importance [3]. In the literature of computer
vision, a task combining both problems is called semantic
segmentation. The common and natural way of nano-scale
semantic segmentation is carried out manually, using some
visualization tools [4, 5]. This is not only subjective but
also labor-expensive, especially when the rapid advances in
automation of nano-scale imaging have led to a dramatic in-
crease in the speed of data collection. Therefore, the growing
amount of human effort required in segmentation becomes
the bottleneck of nano-scale researches.

There exists a large number of segmentation algorithms
that attempt to automate the segmentation process, repre-

sented by watershed [6], active contour [7, 8], level set [9],
sliding window [10], GraphCut [11] and Gaussian Mixture
Model (GMM) [12]. However, these algorithms achieve lim-
ited success in nano-scale data [1, 3]. The task of automation
on nano-scale segmentation is primarily hindered by the co-
existence of two problems: the low signal-to-noise (SNR)
ratio and the large scale (i.e.: a 600×1400×432 tomogram).
The first problem is intrinsic to nano-scale imaging because
of how the image is produced. In an attempt to imaging
nano-scale objects, it is necessary to use enough doses of
electrons to capture measurable contrast. On the other hand,
an increase in the use of electron does tends to damage the
structure of nano-scale objects. Based on this trade-off, it
is common to observe nano-scale data with low SNR and
low contrast (as shown in Fig. 1 (a)). The second problem
derives from the first problem. Due to the low SNR, it is
often very difficult to identify the target objects (such as the
spikes in Fig. 1 (a)) without the existence of much larger
context objects (such as the membranes in Fig. 1 (b)). Thus
high resolution is often necessary for capturing both small
“context sensitive” target objects and large context objects.
Consequently, all the methods above become intractable and
inapplicable to nano-scale semantic segmentation – a task of
small object segmentation in big and noisy data.

To address these issues, we assume the context object seg-
mentation are tractable using appearance features and then
propose a two-stage framework, named context-sensitive se-
mantic segmentation. The key idea is that, via the cues of
context objects that are robust to the noise, our framework
efficiently narrows the search space of the target object iden-
tification in the high resolution data. As a test case, we ap-
ply our segmentation framework on a tomogram of microvilli
with membranes and spikes, although clearly it is not limited
to this example. Our main contributions are as follows:

• We propose a novel statistic framework that can be ex-
tensively used with different context features to over-
come the problems of nano-scale semantic segmenta-
tion (Section 2).

• We design effective context features to achieve semi-
automatic microvilli spike segmentation (Section 3).



Fig. 1. Our task is to address small and faint object (in our ex-
ample, spikes) segmentation on a nano-scale tomogram. An
exemplar “slice” of a tomogram is shown in (a), with two
sample spikes marked by yellow squares. In the first stage,
we produce context object segmentation (membranes colored
in (b)). Each color indicates one connected component in 3D.
In the second stage, we model a number of context cues and
propose a hybrid model to produce a voxel-wise segmentation
of target objects (3D spike ridges in (c) with magenta labels).

2. FRAMEWORK

2.1. Classical semantic segmentation framework

In a general statistic framework, 3D semantic segmentation
is modeled as finding the label oi of each voxel i that maxi-
mizes Pr(oi|fi), the conditional probability density function
(PDF) of the presence of the object oi given a set of features
fi. In classical framework for semantic segmentation, objects
in the background are considered as noise, rather than cues.
Hence, it is often called object-centered model. Respectively,
we have Pr(oi|fi) ' Pr(oi|fAi ), where fAi is a set of local
appearance features of the target object. Unfortunately, the
assumption of the object-centered framework does not often
hold in nano-scale. The intrinsic object appearance features
are often not distinctive enough for accurate semantic seg-
mentation when SNR is extremely low. Another drawback is
its computational cost. Note that fAi is a feature set, every
feature needs to be generated through measurements across
different locations and scales of the entire volume. Thus the
scalability of this framework is intrinsically limited by the
large searching space.

2.2. Our two-stage context-sensitive semantic segmenta-
tion framework

Instead of modeling context objects in the background as
noise, we propose context-sensitive semantic segmentation
– a new framework that is sensitive to contextual features
provided by objects in the background, namely context ob-
jects. The problem of semantic segmentation on faint object

in nano-scale is then re-modeled as two stages: semi-global
context object segmentation and faint target object segmenta-
tion.

2.2.1. Stage one: context object segmentation

As we assume appearance features of context objects are dis-
tinctive enough to produce segmentation, Pr(oi|fi) can be
written as Pr(oi|fAi ) again, where fAi is a set of appearance
features of context object in voxel i, oi = 1 means semi-
global context object and 0 otherwise. For simplicity, we
model this stage as a binary segmentation problem using just
thresholding, which could be replaced by more sophisticated
segmentation algorithms depending on varied demands [3].
Note that fAi could be any specific object features in any spe-
cific problem, relying on which objects provide the contextual
information.

2.2.2. Stage two: faint target segmentation

The availability of hard segmentation on context objects O =
{oi}Ni=1 allows us to compute the appearance and contextual
features (fA

′

i and fC
′

i respectively) for faint and small tar-
get objects. The second stage is thus modeled as finding a
discriminant function Pr(oi

′ = 1|fA′

i , fC
′

i ) that predicts the
posterior probability of a faint target at the i′th voxel given
both types of features. Here fA

′

i and fC
′

i are used to summa-
rize all types of appearance and contextual features for faint
target at the i′th voxel, oi′ = 1 means target object and 0
otherwise. After factorization we have

Pr(o′i = 1|fA
′

i , fC
′

i )

∝ Pr(o′i = 1|fA
′

i )× Pr(fC
′

i |o′i = 1).
(1)

The first term of (1) is simply the classical object-centered
model. The second term is a log-likelihood term that favors
context feature responses that are consistent with our prior
knowledge about the target. For instance, if it is known that
the targets are cars, then the log-likelihood term will be much
larger for road regions than for sea regions.

Following the survey of contexts [13], we extend fC
′

i into
three sets– the semantic context fCse

i (e.g: probability of co-
existence), the spatial context fCsp

i (e.g.: position and orienta-
tion) and the scale context fCsc

i (e.g.: size) of the target object
with respect to its nearby context object respectively. Eq. (1)
can thus be decomposed into four terms,

Pr(o′i = 1|fA
′

i , fC
′

i ) ∝ Pr(o′i = 1|fA
′

i )× Pr(fCse
i |o′i = 1)

× Pr(fCsc
i |fCse

i , o′i = 1)× Pr(f
Csp

i |fCsc
i , fCse

i , o′i = 1),

(2)

where each of the last three terms takes an additional type of
contextual cues into account sequentially. In our work, we fo-
cus on how to utilize different types of contextual cues to not



only improve the segmentation accuracy but also significantly
accelerate the segmentation on large scale.

3. IMPLEMENTATION

3.1. Context object segmentation

The assumption of our framework is that the appearance fea-
tures for larger-scale context object are distinctive enough for
segmentation. Here we just follow the method of Antonio
etc. [14] and extract the context objects – the microvilli mem-
branes M = {Mk}. Fig. 1(b) illustrates a 3D view of the
extracted microvilli membranes.

3.2. Fine-scale faint target segmentation

3.2.1. Appearance cue

As spike heads are somewhat darker than the local back-
ground in certain scale space, they appear as local minimums
in the 3D tomogram. Thus we smooth the image I with a
2D Gaussian filter G of variance σ′, H = I ∗ Gσ′ , and then
generate the appearance model:

Pr(oi
′ = 1|fA

′

i ) =

{
ψ(Hi) , if i = arg maxj∈Ni

Hj ,

0 , otherwise,
(3)

such that ψ(Hi) = (max(H) − Hi)/(max(H) − min(H))
and Ni is the voxel i with its 26 neighbor voxels in 3D.

3.2.2. Scale context cue

Let t and h be the thickness of the membrane and the max-
imum length of a spike respectively. Given the membrane
mask M , we form a number of zones to exclude the local
minimums due to not only membranes but also background
noises that are far from the membrane:

fCsc
i = M ⊕ Eh −M ⊕ Et, (4)

where⊕ denotes the 3D morphological dilation. Correspond-
ingly, the likelihood of scale context feature is as follows:

Pr(fCsc
i |fCse

i , oi
′ = 1) =

{
fCse
i , if fCsc

i = 1,

1− fCse
i , otherwise,

(5)

where fCse
i = 1 if the root of the spike that contains voxel i

is labeled as 1 in membrane segmentation result M , whereas
fCse
i = 0 if the respective root is labeled as 0 in M . Hence,

we formulate the fact that the scale context cue must be sat-
isfied (fCsc

i = 1) if the labels of the target (the spike head)
and the context (the respective spike root on the membrane)
are both given.

3.2.3. Spatial context cue

Due to the prior knowledge that spikes are perpendicular to
and grow toward the outside of the membrane while the shape
of the membrane is convex in general, the root of each spike
should be closer to the membrane centroid than the spike
head. Let d(., .) be the euclidean distance between two vox-
els given their indexes. We can compute the spatial context
feature as:

f
Csp

i =
d(ck, i)

d(ck, i′M )
, (6)

where ck is the centroid index of membrane maskMk and i′M
is the index of the spike root corresponding to the potential
spike head i on membrane segmentationM . As fCsp

i is larger
than 1 if the voxel i is outside the membrane, the likelihood
of spatial context feature is as follows:

Pr(f
Csp

i |fCse
i , oi

′ = 1) =

{
fCse
i , if fCsp

i > 1,

1− fCse
i , otherwise.

(7)

Similarly, here we model the spatial context cue that a spike
root must be closer to the center of the arrayed membrane
than its respective spike head is, indicating the outside of the
membrane.

3.2.4. Semantic context cue

Due to the missing wedge effect of nano-scale imaging, both
membranes and spikes are partially blurred or even missed.
Thus it is necessary to take the reliability of membrane seg-
mentation into account. We explicitly model the semantic
context cue as the coefficient in a hybrid model, determining
the relative contribution of appearance features and context
features in semantic segmentation:

Pr(fCse
i |o′i = 1) =

{
λ, if fCse

i = 1,

1− λ, if fCse
i = 0.

(8)

If we assume the scale context feature fCsc
i and the spatial

context feature fCsp

i are conditionally independent of each
other given the semantic context feature and the target label,
the spike likelihood channel, Eq.(2), is further modeled as:

Pr(o′i = 1|fA
′

i , fCsc
i , f

Csp

i , fCse
i ) ∝ λΨC + (1− λ)ΨA,

such that

ΨC = Pr(o′i = 1|fA
′

i )× Pr(fCsc
i |fCse

i = 1, o′i = 1)

× Pr(f
Csp

i |fCse
i = 1, o′i = 1),

ΨA = Pr(o′i = 1|fA
′

i ).

(9)



Fig. 2. Spike head segmentation performance of different
models. See the text for a description of each model.

The semantic context is explicitly formulated by λ. Then the
classic object-centered model is a special case of our model
when λ = 0. When λ increases, more contributions from the
context cues are taken into account in semantic segmentation
and the segmentation is thus more sensitive to the context.
When λ = 1, our model is close to the context integration
models ([15, 16, 17]).

4. EXPERIMENTAL RESULTS

We evaluated the performance of our method on spike seg-
mentation in a 600×1400×432 tomogram acquired from the
microvilli of insect flight muscle. 27 spike heads arrayed on
a membrane within two slices were annotated by a microvil-
lus expert. Thus we formulate the evaluation of spike seg-
mentation as evaluating the spike head detection and follow
the evaluation methodology of the PASCAL object detection
challenges [18]. A detected voxel (thresholding on Eq. 9) and
a groundtruth voxel form a match if their euclidean distance
is smaller than d = 15, which is suggested as the minimum
distance between two spikes. Moreover, the low SNR and the
large size yield difficulty in using most up-to-date segmen-
tation methods as a good baseline technique for comparison.
As our task is to show the contribution of context cues in our
framework, we apply thresholding on Eq. 3 as a baseline al-
gorithm that is purely based on the appearance feature.

In Figure 2, we present the performance of different mod-
els in terms of the number of missed spikes against the num-
ber of false positives. Model names are shown as follows: ’A’
is our baseline object-centered model, ’ACPE’ is our com-
plete model, and ’AC’ and ’ACP’ are ablations of our com-
plete model. Here ’A’, ’C’, ’P’, ’E’ implies appearance fea-
ture, scale context feature, spatial context feature and seman-
tic context feature respectively. In Fig. 3, we visualized an
exemplar slice cut of several sample output spikes of sev-
eral models (λ = 0.8), along with the ground truth anno-
tation in the cropped original tomogram. By projecting the
detected spike heads of ACPE when FP=50 onto their closest
membranes, we have the corresponding spike ridges shown
in Fig. 1(c). Our results have shown the helpfulness of dif-

Fig. 3. Visualization of spike head segmentation on a exem-
plar slice of the tomogram. The green dots are the ground
truth. The red crosses are the spike heads detected by the re-
spective model. See the text for a description of each model.

ferent context cues in our task clearly. The baseline algo-
rithm does a worse job than the other algorithms with context
cue(s). Moreover, our complete model reaches the best per-
formance. Even though the contribution of semantic context
hasn’t been shown, it completes our general model so that our
model allows the use of all types of potentially useful context
cues.

5. CONCLUSION

We have presented a novel framework for nano-scale seman-
tic segmentation, demonstrated on spike segmentation in a
cryo-electron tomogram. The low SNR and high resolution
of our data makes most up-to-date segmentation methods in-
tractable. In contrast, our method achieved efficient voxel-
wise segmentation through context features that do not only
tolerate the extremely noisy background, but also reduce the
searching space dramatically.
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