
  

Object-Oriented Programming in C++
CGS 3406



  

About Myself

● Primary Research Areas
– Real-time Systems

● Operating system design
● Scheduling

– Storage

● Use C/C++ (among other languages) in my 
research



  

About This Course

● Introductory programming course
● Material applicable to many programming 

languages
● Object oriented programming

C++, Java, Python

Programming



  

This Course

● Remember that this is primarily a course on 
programming

● However, you will have to learn some C++
– Basic facilities

– Learning through doing

– Practice



  

Objectives

● Basic understanding of software and hardware
● Solve computing problems using a top-down approach with a 

well-structured design using procedural programming techniques
● Design, implement, test, and debug a C++ program to solve 

problems
● Control structures used in procedural programming
● Make use of data types and structures in C++
● Design and implement algorithms to perform common tasks
● Demonstrate competence with the use of functions, reference 

parameters, arrays, pointers, recursion and I/O



  

Meeting the Objectives

● Lectures
● Book, notes, online resources, ...
● ~8 Programming Assignments
● 3 Tests
● Quizzes
● More information in the course syllabus



  

Programming



  

Programming

● Translating an idea (e.g., algorithm) into a form 
that can be run on a computer

● Tell the computer what to do
– Easy?

● Problem solving
● Is programming the same as computer 

science?



  

Computer Hardware

● CPU
– Executes machine language 

● Main memory
– Stores instructions and data

● Secondary storage (e.g., SSD, hard disk)
– Persistent



  

Programming Languages

● Machine Language
– Based on machine's core instruction set

– Difficult for humans to read (1's and 0's)

– Example: 1110110101010110001101010
● Say what?

● Assembly Language
– Translation of machine instructions to symbols, slightly easier 

for humans to read

– Example: ADD $R1, $R2, $R3

– Well, we know it has something to do with addition!



  

Programming Languages

● High-level procedural languages
– Abstraction of concepts into more human-readable terms

– Closer to "natural language" (i.e. what we speak)

– Easy to write and design, but must be modified for computer to execute

– Examples include C, Pascal, Fortran

● Object-oriented languages
– Abstraction taken farther than procedural languages

– Objects model real-world objects, not only storing data (attributes), but 
having inherent behaviors (operations, functions)

– Easier to design and write good, portable, maintainable code

– Examples include Smalltalk, C++, Java



  

C++



  

Why C++

“There are only two kinds of languages: the ones people complain about and the ones 
nobody uses.”

― Bjarne Stroustrup, The C++ Programming Language 

● Portability
– supported on nearly all platforms (including embedded 

systems)

● Supports major programming styles
● Used in many projects

– Typically systems and embedded

● Need a programming language to learn programming



  

This Course

● The entire C++ language will not be covered
– Not necessary to meet objectives

– This course won't make you an expert in C++
● C++ has many “interesting” rules/constructs

● General approach
– Programming concepts, techniques, principles

– Map them to code

– Process to perform the mapping



  

 "Hello, World!"

● Program that says Hi
● Very simple program
● Verify

– Basic understanding of language syntax

– Build tools

– Execution platform



  

 "Hello, World!"

#include <iostream>            // pre­processor directive
using namespace std;

int main()                     // start of program
{

cout << "Hello, World!\n"; // standard output stream
return 0;      // return value to operating system

}



  

Compile, Link, Execute

Source Code
(.cpp, .h)

compiler

linker
Executable
Program

Object code
(.o)

Libraries



  

Executable
Program

standard
output stream



  

Operating System

Application

Libraries

Kernel



  

Coding

● Quality
– Design

● Organization

– Ease of understanding

– Self documenting code

● Style
● Debugging



  

Plagiarism

the act of using another person's words or ideas without giving credit to that person

- Merriam-Webster Dictionary

● Code
– Do not “share” assignment code/ideas from others

– Do not claim others' code as your own

● Discussing material is encouraged
– Especially for exams

– Help each other out

● List any sources you used
– If in doubt, list the source

● Plagiarism detection software will likely catch cheating
● Expect to verbally explain assignment code you turn in



  

How to Succeed

“For the things we have to learn before we can do them, we 
learn by doing them.”

― Aristotle, The Nicomachean Ethics 

● Write code frequently
● Ask questions

– Office hours

● Assignments
● Tests/Quizzes
● Bring computer and do examples in class



  

Till Next Class

● Program and execute a “hello world” program
– Computer

● Lab
● Personal

– Software
● Visual Studio
● g++
● ...


