

C++ Basics

Programming

● Computer
– Execute sequence of simple (primitive) instructions
– What instructions should be provided?

● Is there a minimum set? (See Turing Machine)

– Generic
● Reduce future limitations

● Program
– Describe process in the form of a sequence of instructions

● Think recipe

● Programming Language
– Express sequences of instructions

– Translate to computer instructions

 "Hello, World!"

#include <iostream> // preprocessor directive
using namespace std;

int main() // start of program
{

cout << "Hello, World!\n"; // standard output stream
return 0; // return value to operating system

}

Structure of a C++ Program

Computers are good at following instructions, but not at reading your mind.

- Donald Knuth

● https://isocpp.org/std/the-standard
● Grammar

– Rules that define the language

– Describes what is valid and what is not
● E.g., return: is not valid

– Ambiguity

● Statement
– Smallest standalone unit that expresses an action

– Many statements end in a semicolon
● E.g., return 0;

Structure of a C++ Program

● Block (compound statement)
– Treated as a single statement

– Begin with { and end with }(curly braces)

– No semicolon needed after ending curly brace

– Can be used where a simple statement is permitted

Structure of a C++ Program

● Function
– Section of a program performing a specific task

– Every function body is defined inside a block

– Body
● Statements executed in sequence

● For a C++ executable, exactly one function
named main()

Structure of a C++ Program

● Library
– Typically pre-compiled code available to the programmer to

perform common tasks

– Two parts
● Interface

– header file, which contains names and declarations of items available for use

● Implementation
– pre-compiled definitions, or implementation code. In a separate file, location

known to compiler

● Use the #include directive to use a library in your
program (satisfies declare-before-use rule)

Namespaces

 void hello()
 {
 cout << “hello\n”;
 }

File1.cpp File2.cpp

 void hello()
 {
 cout << “Hello\n”;
 }

Comments

● Annotate code
– Add information useful to humans but not to compiler
– Comments are ignored by the compiler

– Examples:
● Author
● Citation – origin of code
● Explain code

● Block style (like C)
/* This is a comment.

 It can span multiple lines */

● Line comments -- use the double-slash //
int x; // This is a comment

x = 3; // This is a comment

More C++ Primitives

2

“Hello, World!”

Memory

1

3

Variables

● Stores data
● Type of data (e.g., string, number)
● Name
● Declare Before Use

– Variables must be declared before they can be used in other
statements

● Examples:
int page_number;

string title;

Variables

● Declare and Define
int x;

● Assign value
x=5;

● Arithmetic operations
x=x+5;

Identifiers

`When I use a word,' Humpty Dumpty said, in rather a scornful tone, `it means just
what I choose it to mean -- neither more nor less.'

― Lewis Carroll, Through the Looking Glass
● Need a way to refer to variables, functions, etc.
● Choose names that are descriptive
● Can use multiple words

● E.g., FirstName, last_name

– Function that performs an action – use predicate-like
● E.g., ComputeGrade(...), display_text(...)

● Be consistent

Programming Strategies

● How do I go about writing a program?
● Top-down programming

– Start with description and divide it into sufficiently
small units corresponding to available components

● Bottom-up programming
– Start with small components and build from them

In-Class Example

Building and Running a C++
Program

Source Code
(.cpp, .h)

compiler

linker
Executable
Program

Object code
(.o)

Libraries

Building and Running a C++
Program

● Pre-processing
– The #include directive is an example of a pre-processor directive (anything starting

with #).

– #include <iostream> tells the preprocessor to copy the standard I/O stream library
header file into the program

● Compiling
– Syntax checking, translation of source code into object code (i.e. machine language).

Not yet an executable program

● Linking
– Puts together any object code files that make up a program, as well as attaching pre-

compiled library implementation code (like the standard I/O library implementation, in
this example)

– End result is a final target -- like an executable program

● Run it!

