

Intro to Programming
CGS 3406

Computer Programming

● Process to instruct computers to perform a given task
● Instructions are generally in the form of a programming language
● Source code is a set of instructions in a given programming language that

expresses the task (e.g., computation)
● We are using the C++ language and standard library
● Programming is a process

– Sequence of steps to achieve an end

– Includes
● Problem solving (designing a solution)
● Refinement

– Debugging
– Adding features

● Many steps in the programming process are similar regardless of the language

Computer Programming in C++

Statement

● Complete executable unit of a program
● Typically composed of one or more expressions
● Simple statement

– End in a semicolon

– expression;

– cout << “hello world\n”;

● Compound statement
– Set of zero or more statements inside curly braces {}

– { statement1; statement2; statement3; }

Declaration Statements

● Introduce a name into a program
● Names cannot be keywords
● Keywords

– Reserved names that are part of the language

– Have special meaning

– Cannot be used as identifiers in your program

– Examples
● while
● if
● else
● ...

Declaration Statements

● Declare before use
● Variables

– type and identifier

int x;

– const declares that the variable cannot change
const int x = 5;

– Attempting to modify a const variable will result in a compiler error

– Note that literals are also constant

● Functions
– Declaration

– Definition

Declaration Statements

type name (parameter1, parameter2, ...)

{

statements

}

● Functions
– Declaration

● Specifies the types input output types

– Definition
● Statements that define what the function does

Control Structures

● Default mode of execution is sequential order
● Alter sequential execution

– Selection
● Statements executed depending on the program state
● Select code to execute based on test

– Iteration
● Repeated execution code until program reaches a given

state

ifelse
(selection)

● if X is true do Y else do Z
● if a<b update current maximum
● Syntax

if (expression)
statement1

else if (expression)
statement2

...

else
statementn

switch
(selection)

● Select code based on case
● Often convenient for occasions in which there are multiple cases to choose from
● Syntax

switch (expression) {

case constant:
statement(s)

case constant:
statement(s)

... (as many case labels as needed)

default: // optional label
statements

}

switch
(selection)

switch (expression) {

case constant:
statement(s)

case constant:
statement(s)

... (as many case labels as needed)

default: // optional label
statements

}
● Evaluates the expression, and then compares it to the values in the case labels

– If it finds a match, execution of code jumps to that case label

switch
(selection)

● The values in case labels must be constants, and may
only be integer types, which means that you
– integer, char, or enumerations (not yet discussed)

– case label must be a literal or a variable declared to be const

– Note: You may not have case labels with regular variables,
strings, floating point literals, operations, or function calls

● If you want to execute code only in the case that you
jump to, end the case with a break statement,
otherwise execution of code will "fall through" to the
next case

